Application of the polynomial function method to the variable-coefficient Kadomtsev-Petviashvili equation

被引:3
|
作者
Wu, Xue-Sha [1 ]
Zhang, Hao-Miao [1 ]
Liu, Jian-Guo [2 ]
机构
[1] Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China
[2] Jiangxi Univ Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
关键词
Kadomtsev-Petviashvili equation; Polynomial function method; Fluid mechanics; Lump-soliton solution; Lump-periodic solution; LUMP SOLUTIONS;
D O I
10.1016/j.rinp.2023.106670
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we research a (2+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. The lump, lump-soliton and lump-periodic solutions are derived based on the variable-coefficient polynomial function method. The effect of variable coefficients on the amplitude and velocity of solitons is analyzed and shown by some 3D graphs, contour plots and density graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The generalized dressing method with applications to variable-coefficient coupled Kadomtsev-Petviashvili equations
    Zhu, Junyi
    Geng, Xianguo
    CHAOS SOLITONS & FRACTALS, 2007, 31 (05) : 1143 - 1148
  • [22] Direct Similarity Reduction and New Exact Solutions for the Variable-Coefficient Kadomtsev-Petviashvili Equation
    El-Shiekh, Rehab M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (06): : 445 - 450
  • [23] Transformations and multi-solitonic solutions for a generalized variable-coefficient Kadomtsev-Petviashvili equation
    Liang, Yueqian
    Wei, Guangmei
    Li, Xiaonan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (11) : 3268 - 3277
  • [24] Interaction solutions of a variable-coefficient Kadomtsev-Petviashvili equation with self-consistent sources
    Yuan, Na
    Liu, Jian-Guo
    Seadawy, Aly R.
    Khater, Mostafa M. A.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (05) : 787 - 795
  • [25] PAINLEVE ANALYSIS AND THE COMPLETE-INTEGRABILITY OF A GENERALIZED VARIABLE-COEFFICIENT KADOMTSEV-PETVIASHVILI EQUATION
    CLARKSON, PA
    IMA JOURNAL OF APPLIED MATHEMATICS, 1990, 44 (01) : 27 - 53
  • [26] Grammian solutions and pfaffianization of a non-isospectral and variable-coefficient Kadomtsev-Petviashvili equation
    Sun, Ye-Peng
    Tam, Hon-Wah
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) : 810 - 817
  • [27] Painleve analysis and new analytic solutions for variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation
    Li, Xiao-Nan
    Wei, Guang-Mei
    Liang, Yue-Qian
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) : 3568 - 3577
  • [28] Painleve property and new analytic solutions for a variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation
    Wei, Guang-Mei
    Gao, Yi-Tian
    Xu, Tao
    Meng, Xiang-Hua
    Zhang, Chun-Li
    CHINESE PHYSICS LETTERS, 2008, 25 (05) : 1599 - 1602
  • [29] Painlevé property and new analytic solutions for a variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation
    Department of Mathematics, LMIB, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    不详
    不详
    不详
    不详
    Chin. Phys. Lett., 2008, 5 (1599-1602):
  • [30] Binary Darboux transformation for a variable-coefficient nonisospectral modified Kadomtsev-Petviashvili equation with symbolic computation
    Li, Juan
    Gu, Xing-Fa
    Yu, Tao
    Zhan, Yu-Lin
    Liu, Zhi
    Lv, Xing
    Li, Ling-Ling
    Wang, Chun-Mei
    NONLINEAR DYNAMICS, 2016, 83 (03) : 1463 - 1468