Application of the polynomial function method to the variable-coefficient Kadomtsev-Petviashvili equation

被引:3
|
作者
Wu, Xue-Sha [1 ]
Zhang, Hao-Miao [1 ]
Liu, Jian-Guo [2 ]
机构
[1] Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China
[2] Jiangxi Univ Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
关键词
Kadomtsev-Petviashvili equation; Polynomial function method; Fluid mechanics; Lump-soliton solution; Lump-periodic solution; LUMP SOLUTIONS;
D O I
10.1016/j.rinp.2023.106670
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we research a (2+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. The lump, lump-soliton and lump-periodic solutions are derived based on the variable-coefficient polynomial function method. The effect of variable coefficients on the amplitude and velocity of solitons is analyzed and shown by some 3D graphs, contour plots and density graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Pfaffianization of the variable-coefficient Kadomtsev-Petviashvili equation
    Zhang Qing-Fan
    Fan En-Gui
    CHINESE PHYSICS, 2007, 16 (06): : 1505 - 1509
  • [2] On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation
    Tian, Shou-Fu
    Zhang, Hong-Qing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (05)
  • [3] Pfaffianization of the generalized variable-coefficient Kadomtsev-Petviashvili equation
    Meng, Xiang-Hua
    Tian, Bo
    Zhang, Hai-Qiang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1300 - 1305
  • [4] Extended Symmetry of Generalized Variable-Coefficient Kadomtsev-Petviashvili Equation
    Wang Jia
    Li Biao
    Ye Wang-Chuan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (04) : 698 - 702
  • [5] Nonautonomous lump solutions for a variable-coefficient Kadomtsev-Petviashvili equation
    Wang, Yun-Hu
    APPLIED MATHEMATICS LETTERS, 2021, 119
  • [6] Bilinear Backlund Transformation for a Variable-Coefficient Kadomtsev-Petviashvili Equation
    Wu Jian-Ping
    CHINESE PHYSICS LETTERS, 2011, 28 (06)
  • [7] Extended Symmetry of Generalized Variable-Coefficient Kadomtsev-Petviashvili Equation
    王佳
    李彪
    叶望川
    CommunicationsinTheoreticalPhysics, 2010, 53 (04) : 698 - 702
  • [8] Wronskian and Grammian Determinant Solutions for a Variable-Coefficient Kadomtsev-Petviashvili Equation
    YAO Zhen-Zhi~1 ZHANG Chun-Yi~(2
    CommunicationsinTheoreticalPhysics, 2008, 49 (05) : 1125 - 1128
  • [9] Wronskian and Grammian determinant solutions for a variable-coefficient Kadomtsev-Petviashvili equation
    Yao Zhen-Zhi
    Zhang Chun-Yi
    Zhu Hong-Wu
    Meng Xiang-Hua
    Lue Xing
    Shan Wen-Rui
    Tian Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (05) : 1125 - 1128
  • [10] New Wronskian Representation of Solution for a Variable-Coefficient Kadomtsev-Petviashvili Equation
    吴建平
    耿献国
    Chinese Physics Letters, 2013, 30 (06) : 50 - 53