Micro-nodule analysis by severity of pneumoconiosis using 3D CT images

被引:1
|
作者
Hahsimoto, Y. [1 ]
Matsuhiro, M. [2 ]
Suzuki, H. [1 ]
Kawata, Y. [1 ]
Ohtsuka, Y. [3 ]
Kishimoto, T. [4 ]
Ashizawa, K. [5 ]
Niki, N. [6 ]
机构
[1] Tokushima Univ, Tokushima, Japan
[2] Suzuka Univ Med Sci, Suzuka, Japan
[3] Hokkaido Chuo Rosai Hosp, Iwamizawa, Hokkaido, Japan
[4] Okayama Rosai Hosp, Okayama, Japan
[5] Nagasaki Univ, Nagasaki, Japan
[6] Med Sci Inst Inc, Tokushima, Japan
来源
MEDICAL IMAGING 2023 | 2023年 / 12469卷
关键词
pneumoconiosis; micro nodule; computed tomography; quantitative diagnostic criteria;
D O I
10.1117/12.2653766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pneumoconiosis is an occupational respiratory disease caused by inhaling dust into the lungs. In Japan, 240,000 people undergo pneumoconiosis screening every year. X-rays are used worldwide to classify the severity of pneumoconiosis. It is important to distinguish between type 0/1 and type 1/0, which are eligible for recognition of occupational injury. CT images are expected to provide more accurate diagnosis because they can be confirmed in three dimensions compared to X-rays. We extract micro-nodules from 3D CT images for each severity of pneumoconiosis, and analyze and evaluate the number, size, position and CT values of micro-nodules in each lung lobe.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Automatic segmentation of 3D micro-CT coronary vascular images
    Lee, Jack
    Beighley, Patricia
    Ritman, Erik
    Smith, Nicolas
    MEDICAL IMAGE ANALYSIS, 2007, 11 (06) : 630 - 647
  • [22] Electromagnetic rock properties' characterization and modeling using 3D micro-CT rock images
    Yu, Mengping
    Wu, Dagang
    Chen, Yanjun
    Wang, Hanming
    Chen, Ji
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2020, 34 (08) : 1073 - 1089
  • [23] Multi-generational analysis and visualization of the vascular tree in 3D micro-CT images
    Wan, SY
    Ritman, EL
    Higgins, WE
    COMPUTERS IN BIOLOGY AND MEDICINE, 2002, 32 (02) : 55 - 71
  • [24] LUNG NODULE DETECTION IN CT USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Huang, Xiaojie
    Shan, Junjie
    Vaidya, Vivek
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 379 - 383
  • [25] 3D image analysis of lung area using thin slice CT images
    Tozaki, T
    Kawata, Y
    Niki, N
    Ohmatsu, H
    Eguchi, K
    Moriyama, N
    1995 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD, VOLS 1-3, 1996, : 1592 - 1596
  • [26] Enhancing CT 3D Images by Independent Component Analysis of Projection Images
    Hannula, Markus
    Hyttinen, Jari A. K.
    Tanskanen, Jarno M. A.
    XV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING - MEDICON 2019, 2020, 76 : 381 - 389
  • [27] CT lung nodule volumes: Comparison 2D and 3D image analysis
    Judy, PF
    Jacobson, FL
    RADIOLOGY, 2000, 217 : 129 - 129
  • [28] Pulmonary nodule classification based on CT density distribution using 3-D thoracic CT images
    Kawata, Y
    Niki, N
    Ohmatsu, H
    Kusumoto, M
    Kakinuma, R
    Mori, K
    Yamada, K
    Nishiyama, H
    Eguchi, K
    Kaneko, M
    Moriyama, N
    MEDICAL IMAGING 2004: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES, 2004, 5 (23): : 413 - 422
  • [29] 3D multi-scale vision transformer for lung nodule detection in chest CT images
    Hassan Mkindu
    Longwen Wu
    Yaqin Zhao
    Signal, Image and Video Processing, 2023, 17 : 2473 - 2480
  • [30] S-Net: an S-shaped network for nodule detection in 3D CT images
    Zhang, JingYu
    Zou, Wei
    Hu, Nan
    Zhang, Bin
    Wang, Jiajun
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (07):