Micro-nodule analysis by severity of pneumoconiosis using 3D CT images

被引:1
|
作者
Hahsimoto, Y. [1 ]
Matsuhiro, M. [2 ]
Suzuki, H. [1 ]
Kawata, Y. [1 ]
Ohtsuka, Y. [3 ]
Kishimoto, T. [4 ]
Ashizawa, K. [5 ]
Niki, N. [6 ]
机构
[1] Tokushima Univ, Tokushima, Japan
[2] Suzuka Univ Med Sci, Suzuka, Japan
[3] Hokkaido Chuo Rosai Hosp, Iwamizawa, Hokkaido, Japan
[4] Okayama Rosai Hosp, Okayama, Japan
[5] Nagasaki Univ, Nagasaki, Japan
[6] Med Sci Inst Inc, Tokushima, Japan
来源
MEDICAL IMAGING 2023 | 2023年 / 12469卷
关键词
pneumoconiosis; micro nodule; computed tomography; quantitative diagnostic criteria;
D O I
10.1117/12.2653766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pneumoconiosis is an occupational respiratory disease caused by inhaling dust into the lungs. In Japan, 240,000 people undergo pneumoconiosis screening every year. X-rays are used worldwide to classify the severity of pneumoconiosis. It is important to distinguish between type 0/1 and type 1/0, which are eligible for recognition of occupational injury. CT images are expected to provide more accurate diagnosis because they can be confirmed in three dimensions compared to X-rays. We extract micro-nodules from 3D CT images for each severity of pneumoconiosis, and analyze and evaluate the number, size, position and CT values of micro-nodules in each lung lobe.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Micro-nodule analysis by severity of pneumoconiosis using 3D CT images
    Nii, R.
    Kawata, Y.
    Ohtsuka, Y.
    Kishimoto, T.
    Ashizawa, K.
    Niki, N.
    IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, MEDICAL IMAGING 2024, 2024, 12931
  • [2] Lobe-specific micro-nodule analysis of pneumoconiosis progression using 3D CT images
    Hashimoto, Y.
    Matsuhiro, M.
    Suzuki, H.
    Kawata, Y.
    Ohtsuka, Y.
    Kishimoto, T.
    Ashizawa, K.
    Niki, N.
    MEDICAL IMAGING 2022: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2022, 12037
  • [3] Lobe-specific micro-nodule analysis of pneumoconiosis progression using 3D CT images
    Hashimoto, Y.
    Matsuhiro, M.
    Suzuki, H.
    Kawata, Y.
    Ohtsuka, Y.
    Kishimoto, T.
    Ashizawa, K.
    Niki, N.
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2022, 12037
  • [4] Quantitative assessment for pneumoconiosis severity diagnosis using 3D CT images
    Hino, Koki
    Matsuhiro, Mikio
    Suzuki, Hidenobu
    Kawata, Yoshiki
    Niki, Noboru
    Kato, Katsuya
    Kishimoto, Takumi
    Ashizawa, Kazuto
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [5] Automatic 3D pulmonary nodule detection in CT images: A survey
    Valente, Igor Rafael S.
    Cortez, Paulo Cesar
    Cavalcanti Neto, Edson
    Soares, Jose Marques
    de Albuquerque, Victor Hugo C.
    Tavares, Joao Manuel R. S.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 124 : 91 - 107
  • [6] Computer aided diagnosis for severity assessment of pneumoconiosis using CT images
    Suzuki, Hidenobu
    Matsuhiro, Mikio
    Kawata, Yoshiki
    Niki, Noboru
    Kato, Kazuya
    Kishimoto, Takumi
    Ashizawa, Kazuto
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [7] Transformer-based factorized encoder for classification of pneumoconiosis on 3D CT images
    Huang, Yingying
    Si, Yang
    Hu, Bingliang
    Zhang, Yan
    Wu, Shuang
    Wu, Dongsheng
    Wang, Quan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [8] 3D analysis of the trabecular bone using micro-CT
    Moon, HS
    Shim, WH
    Lim, BJ
    Kim, KD
    Kim, HJ
    Chung, MK
    JOURNAL OF DENTAL RESEARCH, 2002, 81 : B323 - B323
  • [9] Extraction and analysis of large vascular networks in 3D micro-CT images
    Wan, SY
    Ritman, EL
    Higgins, WE
    MEDICAL IMAGING 1999: PHYSIOLOGY AND FUNCTION FROM MULTIDIMENSIONAL IMAGES, 1999, 3660 : 322 - 334
  • [10] A novel deep learning framework for lung nodule detection in 3d CT images
    Majidpourkhoei, Reza
    Alilou, Mehdi
    Majidzadeh, Kambiz
    Babazadehsangar, Amin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30539 - 30555