An introduction to causal inference for pharmacometricians

被引:11
|
作者
Rogers, James A. A. [1 ]
Maas, Hugo [2 ]
Pitarch, Alejandro Perez [2 ]
机构
[1] Metrum Res Grp, 2 Tunxis Rd, Suite 112, Tariffville, CT 06081 USA
[2] Boehringer Ingelheim Pharm GmbH & Co KG, Ingelheim, Germany
来源
关键词
TO-TREAT ANALYSIS; G-COMPUTATION; REAL-WORLD; DIAGRAMS; BIAS;
D O I
10.1002/psp4.12894
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
As formal causal inference begins to play a greater role in disciplines that intersect with pharmacometrics, such as biostatistics, epidemiology, and artificial intelligence/machine learning, pharmacometricians may increasingly benefit from a basic fluency in foundational causal inference concepts. This tutorial seeks to orient pharmacometricians to three such fundamental concepts: potential outcomes, g-formula, and directed acyclic graphs (DAGs).
引用
收藏
页码:27 / 40
页数:14
相关论文
共 50 条
  • [21] The Causal Effects of Causal Inference Pedagogy
    Swanson, Sonja A. A.
    EPIDEMIOLOGY, 2023, 34 (05) : 611 - 613
  • [22] Introduction to the Special Section on Causal Inference in Cross Sectional and Longitudinal Mediational Models
    West, Stephen G.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (05) : 812 - 815
  • [23] Causal inference in perioperative medicine observational research: part 1, a graphical introduction
    Krishnamoorthy, Vijay
    Wong, Danny J. N.
    Wilson, Matt
    Raghunathan, Karthik
    Ohnuma, Tetsu
    McLean, Duncan
    Moonesinghe, S. Ramani
    Harris, Steve K.
    BRITISH JOURNAL OF ANAESTHESIA, 2020, 125 (03) : 393 - 397
  • [24] Advances in Statistical Methods for Causal Inference in Prevention Science: Introduction to the Special Section
    Wiedermann, Wolfgang
    Dong, Nianbo
    von Eye, Alexander
    PREVENTION SCIENCE, 2019, 20 (03) : 390 - 393
  • [25] Advances in Statistical Methods for Causal Inference in Prevention Science: Introduction to the Special Section
    Wolfgang Wiedermann
    Nianbo Dong
    Alexander von Eye
    Prevention Science, 2019, 20 : 390 - 393
  • [26] Review of Observation and Experiment: An Introduction to Causal Inference by Paul R. Rosenbaum
    Joel B. Greenhouse
    Edward H. Kennedy
    Psychometrika, 2018, 83 : 1007 - 1010
  • [27] Private Causal Inference
    Kusner, Matt J.
    Sun, Yu
    Sridharan, Karthik
    Weinberger, Kilian Q.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1308 - 1317
  • [28] The Challenge of Causal Inference
    Dammann, Olaf
    Leviton, Alan
    ANNALS OF NEUROLOGY, 2010, 68 (05) : 770 - 770
  • [29] THE RATIONALITY OF CAUSAL INFERENCE
    SHULTZ, TR
    BEHAVIORAL AND BRAIN SCIENCES, 1991, 14 (03) : 503 - 503
  • [30] Causal Graph Inference
    Poilinca, Simona
    Parajuli, Jhanak
    Abreu, Giuseppe
    2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 1209 - 1213