An introduction to causal inference for pharmacometricians

被引:11
|
作者
Rogers, James A. A. [1 ]
Maas, Hugo [2 ]
Pitarch, Alejandro Perez [2 ]
机构
[1] Metrum Res Grp, 2 Tunxis Rd, Suite 112, Tariffville, CT 06081 USA
[2] Boehringer Ingelheim Pharm GmbH & Co KG, Ingelheim, Germany
来源
关键词
TO-TREAT ANALYSIS; G-COMPUTATION; REAL-WORLD; DIAGRAMS; BIAS;
D O I
10.1002/psp4.12894
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
As formal causal inference begins to play a greater role in disciplines that intersect with pharmacometrics, such as biostatistics, epidemiology, and artificial intelligence/machine learning, pharmacometricians may increasingly benefit from a basic fluency in foundational causal inference concepts. This tutorial seeks to orient pharmacometricians to three such fundamental concepts: potential outcomes, g-formula, and directed acyclic graphs (DAGs).
引用
收藏
页码:27 / 40
页数:14
相关论文
共 50 条
  • [1] An Introduction to Causal Inference
    Pearl, Judea
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):
  • [2] Introduction to causal inference
    Spirtes, Peter
    Journal of Machine Learning Research, 2010, 11 : 1643 - 1662
  • [3] An introduction to causal inference
    Sobel, ME
    SOCIOLOGICAL METHODS & RESEARCH, 1996, 24 (03) : 353 - 379
  • [4] Introduction to Causal Inference
    Spirtes, Peter
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1643 - 1662
  • [5] An Introduction to Proximal Causal Inference
    Tchetgen, Eric J. Tchetgen
    Ying, Andrew
    Cui, Yifan
    Shi, Xu
    Miao, Wang
    STATISTICAL SCIENCE, 2024, 39 (03) : 375 - 390
  • [6] Introduction to causal modelling and inference
    Palmgren, J
    SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (02) : 159 - 160
  • [7] Observation & Experiment: An Introduction to Causal Inference
    Blumberg, Carol Joyce
    INTERNATIONAL STATISTICAL REVIEW, 2018, 86 (01) : 165 - 166
  • [8] OBSERVATION AND EXPERIMENT: An Introduction to Causal Inference
    Ryerson, James
    NEW YORK TIMES BOOK REVIEW, 2018, 123 (07): : 17 - 17
  • [9] Observation and Experiment: An Introduction to Causal Inference
    Greenhouse, Joel B.
    Kennedy, Edward H.
    PSYCHOMETRIKA, 2018, 83 (04) : 1007 - 1010
  • [10] Introduction to the Symposium: Causal Inference and Public Health
    Aiello, Allison E.
    Green, Lawrence W.
    ANNUAL REVIEW OF PUBLIC HEALTH, VOL 40, 2019, 40 : 1 - 5