Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics

被引:38
|
作者
Cheng, Chong-Dong [1 ]
Tian, Bo [1 ]
Shen, Yuan [1 ]
Zhou, Tian-Yu [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Hirota method; Pfaffian technique; Soliton solutions; Breather solutions; SOLITON-SOLUTIONS; RATIONAL SOLUTIONS; BACKLUND TRANSFORMATION; EQUATION;
D O I
10.1007/s11071-022-08189-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics is investigated. Bilinear form under certain coefficient constraints is given via the Hirota method. The Nth-order Pfaffian solutions are proved by means of the Pfaffian technique, where N is a positive integer. N-soliton and the higher-order breather solutions are exported through the Nth-order Pfaffian solutions. Different two-soliton/breather structures and their dynamics are derived. Elastic/inelastic interactions between the two solitons/breathers are investigated. Graphical representations of the influence of the coefficients in the equation on the velocities and amplitudes of the solitons and breathers are exhibited.
引用
收藏
页码:6659 / 6675
页数:17
相关论文
共 50 条
  • [21] Infinite conservation laws and new solutions of (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Zhang, Shi-Jie
    Bao, Taogetusang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (16):
  • [22] Soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation
    Hongcai Ma
    Qiaoxin Cheng
    Aiping Deng
    CommunicationsinTheoreticalPhysics, 2020, 72 (09) : 3 - 9
  • [23] Comment on "Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics" [Eur. Phys. J. Plus (2020) 135:272]
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (08):
  • [24] Pfaffian, breather, and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics
    Cheng, Chong-Dong
    Tian, Bo
    Ma, Yong-Xin
    Zhou, Tian-Yu
    Shen, Yuan
    PHYSICS OF FLUIDS, 2022, 34 (11)
  • [25] The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in fluid mechanics
    Cai-Yin Zhang
    Yi-Tian Gao
    Liu-Qing Li
    Cui-Cui Ding
    Nonlinear Dynamics, 2020, 102 : 1773 - 1786
  • [26] Higher-order mixed localized wave solutions and bilinear auto-Backlund transformations for the (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Han, Peng-Fei
    Bao, Taogetusang
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (02):
  • [27] The phase transition of control parameters for the (3+1)-dimensional Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in plasma or ocean dynamics
    Yao, Xuemin
    Ma, Jinying
    Meng, Gaoqing
    NONLINEAR DYNAMICS, 2024, 112 (20) : 18435 - 18451
  • [28] Multi-peak and rational soliton propagations for (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup Kupershmidt model in fluid mechanics, ocean dynamics and plasma physics
    Ahmed, Sarfaraz
    Seadawy, Aly R. R.
    Rizvi, Syed T. R.
    Hameed, Majid
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (09)
  • [29] Solitons, Lumps, breathers and rouge wave solutions to the (3+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt model
    Tariq K.U.
    Bekir A.
    Ilyas H.
    Optik, 2023, 287
  • [30] Lie group analysis and analytic solutions for a (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation in fluid mechanics and plasma physics
    Fei-Yan Liu
    Yi-Tian Gao
    Xin Yu
    Liu-Qing Li
    Cui-Cui Ding
    Dong Wang
    The European Physical Journal Plus, 136