Large Language Models are Versatile Decomposers: Decomposing Evidence and Questions for Table-based Reasoning

被引:11
|
作者
Ye, Yunhu [1 ,4 ]
Hui, Binyuan [2 ]
Yang, Min [3 ]
Li, Binhua [2 ]
Huang, Fei [2 ]
Li, Yongbin [2 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] DAMO Acad, Alibaba Grp, Hangzhou, Peoples R China
[3] Chinese Acad Sci, SIAT, Shenzhen, Peoples R China
[4] Chinese Acad Sci, Shenzhen Inst Adv Technol SIAT, Shenzhen, Peoples R China
关键词
Table-based reasoning; Large language models; Pre-trained language models;
D O I
10.1145/3539618.3591708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Table-based reasoning has shown remarkable progress in a wide range of table-based tasks. It is a challenging task, which requires reasoning over both free-form natural language (NL) questions and (semi-)structured tabular data. However, previous table-based reasoning solutions usually suffer from significant performance degradation on "huge" evidence (tables). In addition, most existing methods struggle to reason over complex questions since the essential information is scattered in different places. To alleviate the above challenges, we exploit large language models (LLMs) as decomposers for effective table-based reasoning, which (i) decompose huge evidence (a huge table) into sub-evidence (a small table) to mitigate the interference of useless information for table reasoning, and (ii) decompose a complex question into simpler sub-questions for text reasoning. First, we use a powerful LLM to decompose the evidence involved in the current question into the sub-evidence that retains the relevant information and excludes the remaining irrelevant information from the "huge" evidence. Second, we propose a novel "parsing-execution-filling" strategy to decompose a complex question into simper step-by-step sub-questions by generating intermediate SQL queries as a bridge to produce numerical and logical sub-questions with a powerful LLM. Finally, we leverage the decomposed sub-evidence and sub-questions to get the final answer with a few in-context prompting examples. Extensive experiments on three benchmark datasets (TabFact, WikiTableQuestion, and FetaQA) demonstrate that our method achieves significantly better results than competitive baselines for table-based reasoning. Notably, our method outperforms human performance for the first time on the TabFact dataset. In addition to impressive overall performance, our method also has the advantage of interpretability, where the returned results are to some extent tractable with the generated sub-evidence and sub-questions. For reproducibility, we release our source code and data at: https://github.com/AlibabaResearch/DAMO-ConvAI.
引用
收藏
页码:174 / 184
页数:11
相关论文
共 50 条
  • [41] INFORM : Information eNtropy based multi-step reasoning FOR large language Models
    Zhou, Chuyue
    You, Wangjie
    Li, Juntao
    Ye, Jing
    Chen, Kehai
    Zhang, Min
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 3565 - 3576
  • [42] VCoder: Versatile Vision Encoders for Multimodal Large Language Models
    Jain, Jitesh
    Yang, Jianwei
    Shi, Humphrey
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 27992 - 28002
  • [43] Towards evaluating and building versatile large language models for medicine
    Wu, Chaoyi
    Qiu, Pengcheng
    Liu, Jinxin
    Gu, Hongfei
    Li, Na
    Zhang, Ya
    Wang, Yanfeng
    Xie, Weidi
    NPJ DIGITAL MEDICINE, 2025, 8 (01):
  • [44] NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large Language Models
    Zhou, Gengze
    Hong, Yicong
    Wu, Qi
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7641 - 7649
  • [45] Towards Analysis and Interpretation of Large Language Models for Arithmetic Reasoning
    Akter, Mst Shapna
    Shahriar, Hossain
    Cuzzocrea, Alfredo
    2024 11TH IEEE SWISS CONFERENCE ON DATA SCIENCE, SDS 2024, 2024, : 267 - 270
  • [46] Reasoning with Large Language Models on Graph Tasks: The Influence of Temperature
    Wang, Yiming
    Zhang, Ziyang
    Chen, Hanwei
    Shen, Huayi
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 630 - 634
  • [47] Cocoon: Semantic Table Profiling Using Large Language Models
    Huang, Zezhou
    Wu, Eugene
    WORKSHOP ON HUMAN-IN-THE-LOOP DATA ANALYTICS, HILDA 2024, 2024,
  • [48] Large Language Models are few(1)-shot Table Reasoners
    Chen, Wenhu
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1120 - 1130
  • [49] Over-Reasoning and Redundant Calculation of Large Language Models
    Chiang, Cheng-Han
    Lee, Hung-yi
    PROCEEDINGS OF THE 18TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2: SHORT PAPERS, 2024, : 161 - 169
  • [50] Exploring Reversal Mathematical Reasoning Ability for Large Language Models
    Guo, Pei
    You, Wangjie
    Li, Juntao
    Yan, Bowen
    Zhang, Min
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 13671 - 13685