MixUp Brain-Cortical Augmentations in Self-supervised Learning

被引:0
|
作者
Ambroise, Corentin [1 ]
Frouin, Vincent [1 ]
Dufumier, Benoit [1 ]
Duchesnay, Edouard [1 ]
Grigis, Antoine [1 ]
机构
[1] Univ Paris Saclay, CEA, NeuroSpin, F-91191 Gif Sur Yvette, France
关键词
Data augmentation; Spherical convolutional neural networks; Self-supervised learning; Brain structural MRI; SURFACE-BASED ANALYSIS;
D O I
10.1007/978-3-031-44858-4_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning biological markers for a specific brain pathology is often impaired by the size of the dataset. With the advent of large open datasets in the general population, new learning strategies have emerged. In particular, deep representation learning consists of training a model via pretext tasks that can be used to solve downstream clinical problems of interest. More recently, self-supervised learning provides a rich framework for learning representations by contrasting transformed samples. These methods rely on carefully designed data manipulation to create semantically similar but syntactically different samples. In parallel, domain-specific architectures such as spherical convolutional neural networks can learn from cortical brain measures in order to reveal original biomarkers. Unfortunately, only a few surface-based augmentations exist, and none of them have been applied in a self-supervised learning setting. We perform experiments on two open source datasets: Big Healthy Brain and Healthy Brain Network. We propose new augmentations for the cortical brain: baseline augmentations adapted from classical ones for training convolutional neural networks, typically on natural images, and new augmentations called MixUp. The results suggest that surface-based self-supervised learning performs comparably to supervised baselines, but generalizes better to different tasks and datasets. In addition, the learned representations are improved by the proposed MixUp augmentations. The code is available on GitHub (https://github.com/neurospin-projects/2022 cambroise surfaugment).
引用
收藏
页码:102 / 111
页数:10
相关论文
共 50 条
  • [41] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [42] Whitening for Self-Supervised Representation Learning
    Ermolov, Aleksandr
    Siarohin, Aliaksandr
    Sangineto, Enver
    Sebe, Nicu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [43] Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Albrecht, Conrad M.
    Ait Ali Braham, Nassim
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 213 - 247
  • [44] Relational Self-Supervised Learning on Graphs
    Lee, Namkyeong
    Hyun, Dongmin
    Lee, Junseok
    Park, Chanyoung
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1054 - 1063
  • [45] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [46] COMBINING SELF-SUPERVISED AND SUPERVISED LEARNING WITH NOISY LABELS
    Zhang, Yongqi
    Zhang, Hui
    Yao, Quanming
    Wan, Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 605 - 609
  • [47] The Challenges of Continuous Self-Supervised Learning
    Purushwalkam, Senthil
    Morgado, Pedro
    Gupta, Abhinav
    COMPUTER VISION, ECCV 2022, PT XXVI, 2022, 13686 : 702 - 721
  • [48] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [49] Self-Supervised Learning for User Localization
    Dash, Ankan
    Gu, Jingyi
    Wang, Guiling
    Ansari, Nirwan
    2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2024, : 886 - 890
  • [50] Self-supervised hypergraph structure learning
    Li, Mingyuan
    Yang, Yanlin
    Meng, Lei
    Peng, Lu
    Zhao, Haixing
    Ye, Zhonglin
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (06)