Multi-Agent Deep Reinforcement Learning based Collaborative Computation Offloading in Vehicular Edge Networks

被引:0
|
作者
Wang, Hao [1 ]
Zhou, Huan [1 ]
Zhao, Liang [1 ]
Liu, Xuxun [2 ]
Leung, Victor C. M. [3 ]
机构
[1] China Three Gorges Univ, Coll Comp & Informat Technol, Hubei Key Lab Intelligent Vis Based Monitoring Hy, Yichang, Peoples R China
[2] South China Univ Technol, Coll Elect & Informat Engn, Guangzhou, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-agent; computation offloading; resource allocation; markov decision process; deep deterministic policy gradient;
D O I
10.1109/ICDCSW60045.2023.00027
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, to cope with the long communication distance and unreliability of cloud-based computing architectures, mobile edge computing has emerged as a solution with great promise. This pattern extends cloud-based services towards the vehicular edge network and enables vehicular tasks to be offloaded to intermediate Roadside Units (RSUs) directly. However, as more and more tasks are offloaded to RSUs, the computation capacity of a single RSU becomes insufficient. Without edge cooperation, overall resource utilization and effectiveness are prone to being underutilized. To address this issue, this paper investigates a collaborative computation offloading scheme where adjacent RSUs can process offloaded tasks collaboratively rather than individually. First, we explore a vehicular edge network where the bilateral synergy between RSUs is leveraged. In particular, we incorporate a price-based incentive mechanism into the resource allocation process to promote overall resource utilization. Second, considering the time-varying system conditions and uncertain resource requirements, the optimization problem is approximated as a Markov Decision Process (MDP) and extended to a multi-agent system. Finally, we propose a Multi-agent Deep deterministic policy gradient-based computation Offloading and resource Allocation scheme (MDOA) to solve the corresponding problem. Simulation results show that the proposed MDOA can not only achieve a higher long-term utility of RSUs but also have better performance than other baselines in different scenarios.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 50 条
  • [41] Multi-Agent Deep Reinforcement Learning for Cooperative Computing Offloading and Route Optimization in Multi Cloud-Edge Networks
    Suzuki, Akito
    Kobayashi, Masahiro
    Oki, Eiji
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 4416 - 4434
  • [42] Deep Reinforcement Learning-Based Cloud-Edge Collaborative Mobile Computation Offloading in Industrial Networks
    Chen, Siguang
    Chen, Jiamin
    Miao, Yifeng
    Wang, Qian
    Zhao, Chuanxin
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2022, 8 : 364 - 375
  • [43] Value Decomposition based Multi-Task Multi-Agent Deep Reinforcement Learning in Vehicular Networks
    Xu, Shilin
    Guo, Caili
    Hu, Rose Qingyang
    Qian, Yi
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [44] Optimization of Task Offloading Strategy for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Zheng, Shuai
    Shen, Yifan
    IEEE ACCESS, 2020, 8 : 202573 - 202584
  • [45] Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning
    Liang, Le
    Ye, Hao
    Li, Geoffrey Ye
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (10) : 2282 - 2292
  • [46] Resource allocation strategy for vehicular communication networks based on multi-agent deep reinforcement learning
    Liu, Zhibin
    Deng, Yifei
    VEHICULAR COMMUNICATIONS, 2025, 53
  • [47] Deep Multi-Agent Reinforcement Learning Based Cooperative Edge Caching in Wireless Networks
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [48] Collaborative Computation Offloading Scheme Based on Deep Reinforcement Learning
    Park, Jinho
    Chung, Kwangsue
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 110 - 115
  • [49] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353
  • [50] Hierarchical Multi-Agent Deep Reinforcement Learning for Energy-Efficient Hybrid Computation Offloading
    Zhou, Hang
    Long, Yusi
    Gong, Shimin
    Zhu, Kun
    Hoang, Dinh Thai
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 986 - 1001