Deep learning-based modelling of pyrolysis

被引:5
|
作者
Ozcan, Alper [1 ]
Kasif, Ahmet [2 ]
Sezgin, Ismail Veli [3 ]
Catal, Cagatay [4 ]
Sanwal, Muhammad [1 ]
Merdun, Hasan [3 ]
机构
[1] Akdeniz Univ, Dept Comp Engn, TR-07700 Antalya, Turkiye
[2] Bursa Tech Univ, Dept Comp Engn, TR-16330 Bursa, Turkiye
[3] Akdeniz Univ, Dept Environm Engn, TR-07700 Antalya, Turkiye
[4] Qatar Univ, Dept Comp Sci & Engn, Doha 2713, Qatar
关键词
Deep learning; Bi-LSTM; ANN; TGA; Greenhouse wastes; Coal; Co-pyrolysis; ARTIFICIAL NEURAL-NETWORK; CO-PYROLYSIS; KINETIC-PARAMETERS; RENEWABLE ENERGY; BIO-OIL; EMISSION CHARACTERISTICS; ENVIRONMENTAL-IMPACT; SEWAGE-SLUDGE; BIOMASS; COMBUSTION;
D O I
10.1007/s10586-023-04096-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pyrolysis is one of the thermochemical methods used to produce value-added products from biomass. Thermogravimetric analysis (TGA) is frequently used to examine the energy potential and thermal behavior of biomass, coal, and their blends. The investigation of the TGA data using Artificial Neural Networks (ANN) is one of the most important research areas in recent years. While there are different research papers on the use of Machine Learning (ML) in this field, there is a lack of systematic application of deep learning (DL) algorithms. As such, we applied DL algorithms together with ML algorithms to evaluate the predictive performance of thermal behaviors of proposed bioenergy sources. Thermal behavior of tomato, pepper, eggplant, squash, and cucumber harvest wastes, the equal mass (20%) mixture of them, and the blends of the mixture with coal in the ratios of 20, 33, and 50% under nitrogen atmosphere were investigated by the TGA and ML models. Based on the pyrolysis thermal behavior of the harvest wastes, the eggplant, pepper, tomato, and 5-biomass mixture had the highest conversion potential. According to the thermal behavior of co-pyrolysis of coal and harvest waste mixtures, it had positive effects on pyrolysis conversion degrees and temperature range compared to the coal, and therefore, they can be used as alternative sources for energy production. The MSE and R2 scores of Bi-directional LSTM demonstrate that an improved performance can be obtained with DL based solutions. Promising results were obtained when the Bidirectional LSTM is applied for modeling the pyrolysis.
引用
收藏
页码:1089 / 1108
页数:20
相关论文
共 50 条
  • [21] On a Meta Learning-Based Scheduler for Deep Learning Clusters
    Yang, Jin
    Bao, Liang
    Liu, Wenjing
    Yang, Rong
    Wu, Chase Q.
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2023, 11 (04) : 3631 - 3642
  • [22] Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling
    Piotrowski, Adam P.
    Napiorkowski, Jaroslaw J.
    Piotrowska, Agnieszka E.
    EARTH-SCIENCE REVIEWS, 2020, 201
  • [23] Modelling the Periodic Response of Micro-Electromechanical Systems through Deep Learning-Based Approaches
    Gobat, Giorgio
    Baronchelli, Alessia
    Fresca, Stefania
    Frangi, Attilio
    ACTUATORS, 2023, 12 (07)
  • [24] Machine Learning-based Incremental Learning in Interactive Domain Modelling
    Saini, Rijul
    Mussbacher, Gunter
    Guo, Jin L. C.
    Kienzle, Jorg
    PROCEEDINGS OF THE 25TH INTERNATIONAL ACM/IEEE CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS, MODELS 2022, 2022, : 176 - 186
  • [25] CasMDN: A deep learning-based multivariate distribution modelling approach and its application in geotechnical engineering
    Zhang, Jiawen
    Han, Shuai
    Li, Mingchao
    Li, Heng
    Zhao, Wenchao
    Wang, Jia
    Liang, Hui
    COMPUTERS AND GEOTECHNICS, 2024, 168
  • [26] Deep Learning-based Brain Tumour Segmentation
    Ventakasubbu, Pattabiraman
    Ramasubramanian, Parvathi
    IETE JOURNAL OF RESEARCH, 2023, 69 (06) : 3156 - 3164
  • [27] Deep learning-based galaxy image deconvolution
    Akhaury, Utsav
    Starck, Jean-Luc
    Jablonka, Pascale
    Courbin, Frederic
    Michalewicz, Kevin
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [28] Deep Learning-Based Conformal Prediction of Toxicity
    Zhang, Jin
    Norinder, Ulf
    Svensson, Fredrik
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2648 - 2657
  • [29] A Deep Learning-Based Intelligent Receiver for OFDM
    Wang, Bin
    Xu, Ke
    Song, Panting
    Zhang, Yuzhi
    Liu, Yang
    Sun, Yanjing
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2021), 2021, : 562 - 563
  • [30] Deep learning-based landslide susceptibility mapping
    Azarafza, Mohammad
    Azarafza, Mehdi
    Akgun, Haluk
    Atkinson, Peter M.
    Derakhshani, Reza
    SCIENTIFIC REPORTS, 2021, 11 (01)