Data Fusion-based Discovery (DAFdiscovery) pipeline to aid compound annotation and bioactive compound discovery across diverse spectral data

被引:9
|
作者
Borges, Ricardo Moreira [1 ]
Costa, Fernanda das Neves [1 ]
Chagas, Fernanda O. [1 ]
Teixeira, Andrew Magno [1 ]
Yoon, Jaewon [2 ]
Weiss, Marcio Barczyszyn [2 ]
Crnkovic, Camila Manoel [2 ]
Pilon, Alan Cesar [3 ]
Garrido, Bruno C. [4 ]
Betancur, Luz Adriana [5 ]
Forero, Abel M. [6 ,7 ,8 ]
Castellanos, Leonardo [6 ]
Ramos, Freddy A. [6 ]
Pupo, Monica T. [3 ]
Kuhn, Stefan [9 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Pesquisas Prod Nat Walter Mors, Rio De Janeiro, Brazil
[2] Univ Sao Paulo, Fac Ciencias Farmaceut, Sao Paulo, Brazil
[3] Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Sao Paulo, Brazil
[4] Organ Anal Lab, Chem Metrol Div, Inmetro, Brazil
[5] Univ Caldas, Dept Quim, Edificio Orlando Sierra, Caldas, Colombia
[6] Univ Nacl Colombia, Dept Quim, Sede Bogota, Bogota, Colombia
[7] Univ A Coruna, Dept Quim, Fac Ciencias, Coruna, Spain
[8] Univ A Coruna, Ctr Invest Cient Avanzadas CI CA, Coruna, Spain
[9] De Montfort Univ, Sch Comp Sci & Informat, Leicester, Leics, England
基金
巴西圣保罗研究基金会;
关键词
NMR;
D O I
10.1002/pca.3178
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Introduction Data Fusion-based Discovery (DAFdiscovery) is a pipeline designed to help users combine mass spectrometry (MS), nuclear magnetic resonance (NMR), and bioactivity data in a notebook-based application to accelerate annotation and discovery of bioactive compounds. It applies Statistical Total Correlation Spectroscopy (STOCSY) and Statistical HeteroSpectroscopy (SHY) calculation in their data using an easy-to-follow Jupyter Notebook. Method Different case studies are presented for benchmarking, and the resultant outputs are shown to aid natural products identification and discovery. The goal is to encourage users to acquire MS and NMR data from their samples (in replicated samples and fractions when available) and to explore their variance to highlight MS features, NMR peaks, and bioactivity that might be correlated to accelerated bioactive compound discovery or for annotation-identification studies. Results Different applications were demonstrated using data from different research groups, and it was shown that DAFdiscovery reproduced their findings using a more straightforward method. Conclusion DAFdiscovery has proven to be a simple-to-use method for different situations where data from different sources are required to be analyzed together.
引用
收藏
页码:48 / 55
页数:8
相关论文
共 42 条
  • [31] Saliency-based Object Discovery on RGB-D Data with a Late-Fusion Approach
    Garcia, German M.
    Potapova, Ekaterina
    Werner, Thomas
    Zillich, Michael
    Vincze, Markus
    Frintrop, Simone
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1866 - 1873
  • [32] Towards Accurate Skin Lesion Classification across All Skin Categories Using a PCNN Fusion-Based Data Augmentation Approach
    Adjobo, Esther Chabi
    Mahama, Amadou Tidjani Sanda
    Gouton, Pierre
    Tossa, Joel
    COMPUTERS, 2022, 11 (03)
  • [33] Development and construction of an original compound library for CNS drug discovery: Combining computational and wet data to enhance CNS drug-likeness
    Hasegawa, Daiju
    Graczyk, Piotr
    Nicewonger, Robert
    Bhatia, Gurpreet
    Birch, Louise
    Dimopoulos, Paschalis
    Payne, Andrew
    Kobayashi, Yoshihisa
    Terauchi, Taro
    Clark, Richard
    Suzuki, Shuichi
    Watanabe, Misako
    Nishioka, Tomoki
    Terauchi, Hiroki
    Ozaki, Shunsuke
    Kushida, Ikuo
    Suh, Ted
    Yu, Melvin
    Benayoud, Farid
    Sanders, Kristen
    Fang, Frank
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [34] Alzheimer-compound identification based on data fusion and forgeNet_SVM (vol 14, 931729, 2022)
    Yang, Bin
    Bao, Wenzheng
    Hong, Shichai
    FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
  • [36] A dynamic big data fusion and knowledge discovery approach for water resources intelligent system based on granular computing
    Zhang Y.
    Zhang F.
    Ai X.
    Zhang H.
    Feng Y.
    Measurement: Sensors, 2023, 30
  • [37] Bellerophontes: an RNA-Seq data analysis framework for chimeric transcripts discovery based on accurate fusion model
    Abate, Francesco
    Acquaviva, Andrea
    Paciello, Giulia
    Foti, Carmelo
    Ficarra, Elisa
    Ferrarini, Alberto
    Delledonne, Massimo
    Iacobucci, Ilaria
    Soverini, Simona
    Martinelli, Giovanni
    Macii, Enrico
    BIOINFORMATICS, 2012, 28 (16) : 2114 - 2121
  • [38] Estimate Information Fusion Weight of WSNs Nodes Based on Truth Discovery Optimization Method Among Conflicting Sources of Data
    Xiao, Kejiang
    Chen, Zhiwen
    Yang, Chunhua
    IEEE ACCESS, 2019, 7 : 35606 - 35618
  • [39] A deep clustering-based mass spectral data visualization strategy for anti-renal fibrotic lead compound identification from natural products
    Lai, Jieying
    Huang, Lichuang
    Bao, Yini
    Wang, Lu
    Lyu, Qiang
    Kuang, Haodan
    Wang, Kuilong
    Sang, Xianan
    Yang, Qiao
    Shan, Qiyuan
    Cao, Gang
    ANALYST, 2022, 147 (21) : 4739 - 4751
  • [40] DEEP LEARNING-BASED FEATURE FUSION AND TRANSFER LEARNING FOR APPROXIMATING pIC VALUE OF COVID-19 MEDICINE USING DRUG DISCOVERY DATA
    Dhaygude, Amol dattatray
    Hasan, Mehadi
    Vijay, M.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (05)