共 50 条
Influences of umbilical cord mesenchymal stem cells and their exosomes on tumor cell phenotypes
被引:0
|作者:
Liu, Guoqing
[1
]
Cenador, Maria Begona Garcia
[1
]
Si, Shupeng
[2
]
Wang, Heng
[3
]
Yang, Qiu
[4
]
机构:
[1] Univ Salamanca, Patio Escuelas, Sch Med, Dept Surg, Patio Escuelas 1, Salamanca 37008, Spain
[2] Zibo Maternal & Child Hlth Care Hosp, Dept Tradit Chinese Med, Zibo 255000, Shandong, Peoples R China
[3] Ningxia Yiyang Geriatr Hosp, Dept Oncol, Yinchuan 750000, Ningxia, Peoples R China
[4] Gen Hosp Western Theater Command, Dept Oncol, Chengdu 610083, Sichuan, Peoples R China
来源:
关键词:
Umbilical cord mesenchymal stem cells;
exosomes of umbilical cord mesenchymal stem cells;
tumor phenotype;
glioma;
gastric carcinoma;
lung carcinoma;
CANCER;
D O I:
暂无
中图分类号:
R73 [肿瘤学];
学科分类号:
100214 ;
摘要:
Mesenchymal stem cells (MSCs), extensively utilized in contemporary stem cell research, hold significant potential in the treatment of neoplastic diseases. This study aims to investigate the influences of umbilical cord mesenchymal stem cells (UMSCs) and their exosomes (UMSCs-exos) on tumor cell phenotypes. UMSCs and UMSCsexos, isolated from human umbilical cord tissue, were validated for isolation efficiency and differentiation capacity using flow cytometry, electron microscopy, and cell staining. MDA-MB-231, BGC-823, A549, and LN-229, which are human breast (BC), gastric (GC), lung carcinoma (LC) cells and glioma cells, respectively, were treated with UMSCs and UMSCs-exos. Cell counting kit-8 (CCK-8), cell scratch-wound, and Transwell assays were performed on treated cultures to observe the phenotypic changes induced by UMSCs- and UMSCs-exos-treated cancer cells. The results demonstrated that UMSCs highly express PE-labeled positive surface antigens and exhibit low expression of FITC-labeled negative surface antigens, alongside possessing osteogenic and adipogenic differentiation potentials. Electron microscopy revealed UMSCs-exos to be approximately 30-150 nm in diameter, averaging 126.62 +/- 1.64 nm, and displaying increased Tsg101, CD9, and CD63 protein expression. Moreover, MDA-MB-231 and BGC-823 cells exhibited enhanced proliferation, invasion, and migration upon UMSCs and UMSCs-exos treatment. In contrast, A549 cells showed minimal alteration to invasiveness but a marked increase in proliferation and migration capabilities, while LN-229 cells displayed a phenotype indicative of suppressed activity. In conclusion, UMSCs and UMSCsexos effectively promote the growth of BC and LC cells and inhibit the activity of GC and glioma cells, presenting promising avenues for future neoplastic disease treatments.
引用
收藏
页码:6270 / 6279
页数:10
相关论文