Efficient semi-supervised learning model for limited otolith data using generative adversarial networks

被引:0
|
作者
El Habouz, Youssef [1 ]
El Mourabit, Yousef [2 ]
Iggane, Mbark [3 ]
El Habouz, Hammou [4 ]
Lukumon, Gafari [5 ]
Nouboud, Fathallah [6 ]
机构
[1] Rennes 1 Univ, IGDR, Rennes, France
[2] Sultan Moulay SLimane Univ, Sci & Technol Fac, TIAD Lab, Beni Mellal, Morocco
[3] IBN ZOHR Univ, IRF SIC, Agadir, Morocco
[4] INRH, Agadir, Morocco
[5] Mohammed VI Polytech, Sch Collect Intelligence, Ben Guerir, Morocco
[6] UQTR Univ, LIRIC, Trois Rivieres, PQ, Canada
关键词
Otoliths Classification; Semi-supervised Classification; Generative Adversarial Networks; Shape recognition; SHAPE-ANALYSIS; MORPHOLOGY;
D O I
10.1007/s11042-023-16007-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Otolith shape recognition is one of the relevant tool to ensure the sustainability of maritime resources. It is used to study taxonomy, age estimation and discrimination of stocks of fish species. The most performant otolith image classification models are based on convolutional neural network approaches. To build an efficient system, these models require a large number of labeled images, which is hard to obtain. The lack of data became a big challenge, and a real problem of otolith images classification models, it causes the over-fitting issue, which is the main trouble of deep convolutional neural network based models. In this paper, we present a relevant solution for the insufficiency of data. We propose a new semi-supervised classification model based on generative adversarial network. Our results showed that the model is more efficient and also perform better than convolutional neural network system even with a small training dataset. With this efficiency and performance, we found in addition that the accuracy of the model reached 80% on training set of say, 75 images compared to other models such as a convolutional neural network model which accuracy is limited to 60%.
引用
收藏
页码:11909 / 11922
页数:14
相关论文
共 50 条
  • [41] Active semi-supervised learning based on self-expressive correlation with generative adversarial networks
    Zhang, Xiao-Yu
    Shi, Haichao
    Zhu, Xiaobin
    Li, Peng
    NEUROCOMPUTING, 2019, 345 : 103 - 113
  • [42] Discriminative Regularization with Conditional Generative Adversarial Nets for Semi-Supervised Learning
    Xie, Qiangian
    Peng, Min
    Huang, Jimin
    Wang, Bin
    Wang, Hua
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [43] SEMI-SUPERVISED CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON GENERATIVE ADVERSARIAL NETWORKS AND NEIGHBORHOOD MAJORITY VOTING
    Zhan, Ying
    Wu, Kang
    Liu, Wei
    Qin, Jin
    Yang, Zhaoying
    Medjadba, Yasmine
    Wang, Guian
    Yu, Xianchuan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5756 - 5759
  • [44] Quantum semi-supervised generative adversarial network for enhanced data classification
    Nakaji, Kouhei
    Yamamoto, Naoki
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [45] Quantum semi-supervised generative adversarial network for enhanced data classification
    Kouhei Nakaji
    Naoki Yamamoto
    Scientific Reports, 11
  • [46] SEMI-SUPERVISED LEARNING WITH GENERATIVE ADVERSARIAL NETWORKS FOR CHEST X-RAY CLASSIFICATION WITH ABILITY OF DATA DOMAIN ADAPTATION
    Madani, Ali
    Moradi, Mehdi
    Karargyris, Alexandros
    Syeda-Mahmood, Tanveer
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1038 - 1042
  • [47] Adversarial Dropout for Supervised and Semi-Supervised Learning
    Park, Sungrae
    Park, JunKeon
    Shin, Su-Jin
    Moon, Il-Chul
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3917 - 3924
  • [48] Audio-visual domain adaptation using conditional semi-supervised Generative Adversarial Networks
    Athanasiadis, Christos
    Hortal, Enrique
    Asteriadis, Stylianos
    NEUROCOMPUTING, 2020, 397 : 331 - 344
  • [49] Semi-supervised generative adversarial networks for improved colorectal polyp classification using histopathological images
    Sasmal, Pradipta
    Sharma, Vanshali
    Prakash, Allam Jaya
    Bhuyan, M. K.
    Patro, Kiran Kumar
    Samee, Nagwan Abdel
    Alamro, Hayam
    Iwahori, Yuji
    Tadeusiewicz, Ryszard
    Acharya, U. Rajendra
    Plawiak, Pawel
    INFORMATION SCIENCES, 2024, 658
  • [50] Semi-supervised learning using multiple clusterings with limited labeled data
    Forestier, Germain
    Wemmert, Cedric
    INFORMATION SCIENCES, 2016, 361 : 48 - 65