Design and thermal performance analysis of concentrating solar power tower for water heating systems

被引:5
|
作者
Qenawy, Mohamed [1 ,2 ]
El-Mesery, Hany S. [1 ,3 ]
Wang, Junfeng [1 ]
Abdelhady, Salama [2 ]
机构
[1] Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China
[2] Aswan Univ, Fac Energy Engn, Mech Engn Dept, Aswan 81528, Egypt
[3] Agr Res Ctr, Agr Engn Res Inst, Dokki 12618, Giza, Egypt
关键词
CST; Central tower receiver; Heliostat; Optical efficiency; Aswan; CENTRAL RECEIVER SYSTEMS; HELIOSTAT FIELD LAYOUT; DEPLOYMENT; SIMULATION;
D O I
10.1016/j.csite.2023.103141
中图分类号
O414.1 [热力学];
学科分类号
摘要
With the fossil fuel crisis, the world has been looking for renewable energies, and the concen-trated solar tower (CST) technology has been the best solution in intensive solar areas. This paper introduced a detailed design, construction, and operation of small-scale CST for water heating applications in Aswan. Two heliostats (i.e., 50 x 50 cm2 cross-section area and 1.4 m spacing) redirect the incoming solar radiation into the tower's receiver. The receiver is a 20 x 30 cm2 cross-section area on a 1.0 m tower height and a space of 3.0 m from heliostats. Water flows through a 5.0 cm receiver's passage depth to absorb the reflected energy. This design is obtained from modeling the governing equations of both optical and thermal fields. The designed optical efficiency was X85.46% for the optical field, dominated by the Cosine efficiency. As for the thermal field, a detailed 1-D heat transfer mechanism is presented to predict the internal tem-perature. After construction, an experimental test is done, including temperature measurement of the receiver's outer surface and water inlet/outlet. The result consistently affirmed the mathe-matical model, revealing the CST's ability. Through the designed flowrate of 10.2 L/h and outlet -inlet temperature differences of & UDelta;T = 19.5 & PLUSMN; 0.4OC, the maximum water temperature of X48.5 & PLUSMN; 1.0OC was observed at the daytime of 13:00. The maximum obtained designed efficiency was X52%, showing X19% reduction in the designed values (i.e., optical efficiency was X69.22 & PLUSMN; 8.2%, while receiver efficiency was X74.52 & PLUSMN; 5.4%. This work could provide a prototype to the community, promising advanced application of CST technology in the future.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] High performance metal hydride based thermal energy storage systems for concentrating solar power applications
    Ward, Patrick A.
    Corgnale, Claudio
    Teprovich, Joseph A., Jr.
    Motyka, Theodore
    Hardy, Bruce
    Peters, Brent
    Zidan, Ragaiy
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 645 : S374 - S378
  • [42] Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system
    Moaleman, Amirreza
    Kasaeian, Alibakhsh
    Aramesh, Mohamad
    Mahian, Omid
    Sahota, Lovedeep
    Tiwari, Gopal Nath
    ENERGY CONVERSION AND MANAGEMENT, 2018, 160 : 191 - 208
  • [43] Exergy analysis of concentrating solar systems for heat and power production
    Cocco, Daniele
    Petrollese, Mario
    Tola, Vittorio
    ENERGY, 2017, 130 : 192 - 203
  • [44] Concentrating systems for solar power stations
    Strebkov, D.S.
    Tver'yanovich, E.V.
    Thermal Engineering, 1999, 46 (02): : 95 - 100
  • [45] Thermal performance of combined solar and pellet heating systems
    Fiedler, F
    Nordlander, S
    Persson, T
    Bales, C
    RENEWABLE ENERGY, 2006, 31 (01) : 73 - 88
  • [46] Thermodynamic analysis of an idealised solar tower thermal power plant
    Zheng, Hongfei
    Yu, Xu
    Su, Yuehong
    Riffat, Saffa
    Xiong, Jianyin
    APPLIED THERMAL ENGINEERING, 2015, 81 : 271 - 278
  • [47] ANALYSIS OF A CONCENTRATING SOLAR COLLECTOR FOR HEATING AIR
    RUMSEY, TR
    COFFELT, RJ
    DOBIE, JB
    TRANSACTIONS OF THE ASAE, 1983, 26 (05): : 1537 - 1542
  • [48] LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China
    Zhuang, Xiaoru
    Xu, Xinhai
    Liu, Wenrui
    Xu, Wenfu
    ENERGIES, 2019, 12 (07)
  • [49] Design and analysis of a solar tower power plant integrated with thermal energy storage system for cogeneration
    Sorgulu, Fatih
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (12) : 6151 - 6160
  • [50] Optimization of design radiation for concentrating solar thermal power plants without storage
    Desai, Nishith B.
    Kedare, Shireesh B.
    Bandyopadhyay, Santanu
    SOLAR ENERGY, 2014, 107 : 98 - 112