Estimates of p-harmonic functions in planar sectors

被引:0
|
作者
Lundstrom, Niklas L. P. [1 ]
Singh, Jesper [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
来源
ARKIV FOR MATEMATIK | 2023年 / 61卷 / 01期
基金
瑞典研究理事会;
关键词
Phragmen Lindelof principle; growth estimate; Laplace equation; Laplacian; p Laplace equation; infinity Laplace equation; harmonic measure; p harmonic measure; infinity harmonic measure; PHRAGMEN-LINDELOF THEOREM; TUG-OF-WAR; SINGULAR SOLUTIONS; LIPSCHITZ EXTENSIONS; BOUNDARY-BEHAVIOR; INFINITY; EQUATION; PRINCIPLE; DOMAINS; GROWTH;
D O I
10.4310/ARKIV.2023.v61.n1.a8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that p is an element of(1, infinity], nu is an element of[1/2, infinity), S-nu = {(x(1), x(2))is an element of R-2\{(0, 0)}:|phi|< pi/2 nu}, where phi is the polar angle of (x(1), x(2)). Let R>0 and w(p)(x) be the p-harmonic measure of partial derivative B(0, R)boolean AND nS(nu) at x with respect to B(0, R)boolean AND S-nu. We prove that there exists a constant C such C-1 (vertical bar x vertical bar/R)(k(nu,p)) <= w(p)(x) <= C (vertical bar x vertical bar/R)(k(nu,p)) whenever x is an element of B(0, R)boolean AND S-2 nu and where the exponent k(nu, p) is given explicitly as a function of nu and p. Using this estimate we derive local growth estimates for p-sub- and p-superharmonic functions in planar domains which are locally approximable by sectors, e.g., we conclude bounds of the rate of convergence near the boundary where the domain has an inwardly or outwardly pointed cusp. Using the estimates of p-harmonic measure we also derive a sharp Phragmen-Lindelof theorem for p-subharmonic functions in the unbounded sector S-nu. Moreover, if p=infinity then the above mentioned estimates extend from the setting of two-dimensional sectors to cones in R-n. Finally, when nu is an element of(1/2, infinity) and p is an element of(1, infinity) we prove uniqueness (modulo normalization) of positive p-harmonic functions in S nu vanishing on partial derivative S-nu.
引用
收藏
页码:141 / 175
页数:35
相关论文
共 50 条
  • [41] HOLDER CONTINUITY OF DEGENERATE p-HARMONIC FUNCTIONS
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 567 - 577
  • [42] On convexity of level sets of p-harmonic functions
    Zhang, Ting
    Zhang, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) : 2065 - 2081
  • [43] NEWTON INEQUALITIES FOR p-HARMONIC CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Iftikhar, Sabah
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (02): : 239 - 250
  • [44] On the Lipschitz character of orthotropic p-harmonic functions
    Bousquet, P.
    Brasco, L.
    Leone, C.
    Verde, A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
  • [45] On the Lipschitz character of orthotropic p-harmonic functions
    P. Bousquet
    L. Brasco
    C. Leone
    A. Verde
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [46] Description of p-harmonic functions on the Cayley tree
    Rozikov, U. A.
    Ishankulov, F. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 162 (02) : 222 - 229
  • [47] CURVATURE ESTIMATES IN DIMENSIONS 2 AND 3 FOR THE LEVEL SETS OF p-HARMONIC FUNCTIONS IN CONVEX RINGS
    Jost, Juergen
    Ma, Xi-Nan
    Ou, Qianzhong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) : 4605 - 4627
  • [48] The p-harmonic approximation and the regularity of p-harmonic maps
    Frank Duzaar
    Giuseppe Mingione
    Calculus of Variations and Partial Differential Equations, 2004, 20 : 235 - 256
  • [49] The p-harmonic approximation and the regularity of p-harmonic maps
    Duzaar, F
    Mingione, G
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) : 235 - 256
  • [50] LOCAL GRADIENT ESTIMATES OF p-HARMONIC FUNCTIONS, 1/H-FLOW, AND AN ENTROPY FORMULA
    Kotschwar, Brett
    Ni, Lei
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2009, 42 (01): : 1 - 36