FairSample: Training Fair and Accurate Graph Convolutional Neural Networks Efficiently

被引:0
|
作者
Cong, Zicun [1 ]
Shi, Baoxu [2 ]
Li, Shan [2 ]
Yang, Jaewon [2 ]
He, Qi [2 ]
Pei, Jian [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[2] LinkedIn Corp, Sunnnyvale, CA 94085 USA
关键词
Computational modeling; Task analysis; Training; Social networking (online); Predictive models; Costs; Neural networks; Graph neural network; sampling; fairness;
D O I
10.1109/TKDE.2023.3306378
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fairness in Graph Convolutional Neural Networks (GCNs) becomes a more and more important concern as GCNs are adopted in many crucial applications. Societal biases against sensitive groups may exist in many real world graphs. GCNs trained on those graphs may be vulnerable to being affected by such biases. In this paper, we adopt the well-known fairness notion of demographic parity and tackle the challenge of training fair and accurate GCNs efficiently. We present an in-depth analysis on how graph structure bias, node attribute bias, and model parameters may affect the demographic parity of GCNs. Our insights lead to FairSample, a framework that jointly mitigates the three types of biases. We employ two intuitive strategies to rectify graph structures. First, we inject edges across nodes that are in different sensitive groups but similar in node features. Second, to enhance model fairness and retain model quality, we develop a learnable neighbor sampling policy using reinforcement learning. To address the bias in node features and model parameters, FairSample is complemented by a regularization objective to optimize fairness.
引用
收藏
页码:1537 / 1551
页数:15
相关论文
共 50 条
  • [21] Transfer Entropy in Graph Convolutional Neural Networks
    Moldovan, Adrian
    Cataron, Angel
    Andonie, Azvan
    2024 28TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION, IV 2024, 2024, : 207 - 213
  • [22] Anomaly detection with convolutional Graph Neural Networks
    Oliver Atkinson
    Akanksha Bhardwaj
    Christoph Englert
    Vishal S. Ngairangbam
    Michael Spannowsky
    Journal of High Energy Physics, 2021
  • [23] Universal Readout for Graph Convolutional Neural Networks
    Navarin, Nicolo
    Dinh Van Tran
    Sperduti, Alessandro
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [24] Transferability of spectral graph convolutional neural networks
    Levie, Ron
    Huang, Wei
    Bucci, Lorenzo
    Bronstein, Michael
    Kutyniok, Gitta
    Journal of Machine Learning Research, 2021, 22
  • [25] Gated Graph Convolutional Recurrent Neural Networks
    Ruiz, Luana
    Gama, Fernando
    Ribeiro, Alejandro
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [26] Graph Neural Networks With Convolutional ARMA Filters
    Bianchi, Filippo Maria
    Grattarola, Daniele
    Livi, Lorenzo
    Alippi, Cesare
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3496 - 3507
  • [27] FAST GRAPH CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Kadambari, Sai Kiran
    Chepuri, Sundeep Prabhakar
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 467 - 471
  • [28] Explainability Methods for Graph Convolutional Neural Networks
    Pope, Phillip E.
    Kolouri, Soheil
    Rostami, Mohammad
    Martin, Charles E.
    Hoffmann, Heiko
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10764 - 10773
  • [29] GRAPH-TIME CONVOLUTIONAL NEURAL NETWORKS
    Isufi, Elvin
    Mazzola, Gabriele
    2021 IEEE DATA SCIENCE AND LEARNING WORKSHOP (DSLW), 2021,
  • [30] Adaptive filters in Graph Convolutional Neural Networks
    Apicella, Andrea
    Isgro, Francesco
    Pollastro, Andrea
    Prevete, Roberto
    PATTERN RECOGNITION, 2023, 144