FairSample: Training Fair and Accurate Graph Convolutional Neural Networks Efficiently

被引:0
|
作者
Cong, Zicun [1 ]
Shi, Baoxu [2 ]
Li, Shan [2 ]
Yang, Jaewon [2 ]
He, Qi [2 ]
Pei, Jian [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[2] LinkedIn Corp, Sunnnyvale, CA 94085 USA
关键词
Computational modeling; Task analysis; Training; Social networking (online); Predictive models; Costs; Neural networks; Graph neural network; sampling; fairness;
D O I
10.1109/TKDE.2023.3306378
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fairness in Graph Convolutional Neural Networks (GCNs) becomes a more and more important concern as GCNs are adopted in many crucial applications. Societal biases against sensitive groups may exist in many real world graphs. GCNs trained on those graphs may be vulnerable to being affected by such biases. In this paper, we adopt the well-known fairness notion of demographic parity and tackle the challenge of training fair and accurate GCNs efficiently. We present an in-depth analysis on how graph structure bias, node attribute bias, and model parameters may affect the demographic parity of GCNs. Our insights lead to FairSample, a framework that jointly mitigates the three types of biases. We employ two intuitive strategies to rectify graph structures. First, we inject edges across nodes that are in different sensitive groups but similar in node features. Second, to enhance model fairness and retain model quality, we develop a learnable neighbor sampling policy using reinforcement learning. To address the bias in node features and model parameters, FairSample is complemented by a regularization objective to optimize fairness.
引用
收藏
页码:1537 / 1551
页数:15
相关论文
共 50 条
  • [1] Accurate, efficient and scalable training of Graph Neural Networks
    Zeng, Hanqing
    Zhou, Hongkuan
    Srivastava, Ajitesh
    Kannan, Rajgopal
    Prasanna, Viktor
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2021, 147 : 166 - 183
  • [2] Scalable training of graph convolutional neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules
    Choi, Jong Youl
    Zhang, Pei
    Mehta, Kshitij
    Blanchard, Andrew
    Pasini, Massimiliano Lupo
    JOURNAL OF CHEMINFORMATICS, 2022, 14 (01)
  • [3] Scalable training of graph convolutional neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules
    Jong Youl Choi
    Pei Zhang
    Kshitij Mehta
    Andrew Blanchard
    Massimiliano Lupo Pasini
    Journal of Cheminformatics, 14
  • [4] Convolutional Graph Neural Networks
    Gama, Fernando
    Marques, Antonio G.
    Leus, Geert
    Ribeiro, Alejandro
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 452 - 456
  • [5] Training Matters: Unlocking Potentials of Deeper Graph Convolutional Neural Networks
    Luan, Sitao
    Zhao, Mingde
    Chang, Xiao-Wen
    Precup, Doina
    COMPLEX NETWORKS & THEIR APPLICATIONS XII, VOL 1, COMPLEX NETWORKS 2023, 2024, 1141 : 49 - 60
  • [6] Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
    Xie, Tian
    Grossman, Jeffrey C.
    PHYSICAL REVIEW LETTERS, 2018, 120 (14)
  • [7] Distributed Training of Graph Convolutional Networks
    Scardapane, Simone
    Spinelli, Indro
    Di Lorenzo, Paolo
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2021, 7 : 87 - 100
  • [8] Pooling in Graph Convolutional Neural Networks
    Cheung, Mark
    Shi, John
    Jiang, Lavender
    Wright, Oren
    Moura, Jose M. F.
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 462 - 466
  • [9] Quantum Graph Convolutional Neural Networks
    Zheng, Jin
    Gao, Qing
    Lu, Yanxuan
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6335 - 6340
  • [10] Adaptive Graph Convolutional Neural Networks
    Li, Ruoyu
    Wang, Sheng
    Zhu, Feiyun
    Huang, Junzhou
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3546 - 3553