Temporal Feature Extraction and Machine Learning for Classification of Sleep Stages Using Telemetry Polysomnography

被引:7
|
作者
Lal, Utkarsh [1 ]
Vasanthsena, Suhas Mathavu [2 ]
Hoblidar, Anitha [2 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Comp Sci & Engn, Manipal 576104, Karnataka, India
[2] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Commun Engn, Manipal 576104, Karnataka, India
关键词
polysomnography; electroencephalography; electromyography; electrooculography; power spectral density; Higuchi fractal dimension; singular value decomposition entropy; permutation entropy; detrended fluctuation analysis; XGBoost; CHANNEL; SYSTEM;
D O I
10.3390/brainsci13081201
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate sleep stage detection is crucial for diagnosing sleep disorders and tailoring treatment plans. Polysomnography (PSG) is considered the gold standard for sleep assessment since it captures a diverse set of physiological signals. While various studies have employed complex neural networks for sleep staging using PSG, our research emphasises the efficacy of a simpler and more efficient architecture. We aimed to integrate a diverse set of feature extraction measures with straightforward machine learning, potentially offering a more efficient avenue for sleep staging. We also aimed to conduct a comprehensive comparative analysis of feature extraction measures, including the power spectral density, Higuchi fractal dimension, singular value decomposition entropy, permutation entropy, and detrended fluctuation analysis, coupled with several machine-learning models, including XGBoost, Extra Trees, Random Forest, and LightGBM. Furthermore, data augmentation methods like the Synthetic Minority Oversampling Technique were also employed to rectify the inherent class imbalance in sleep data. The subsequent results highlighted that the XGBoost classifier, when used with a combination of all feature extraction measures as an ensemble, achieved the highest performance, with accuracies of 87%, 90%, 93%, 96%, and 97% and average F1-scores of 84.6%, 89%, 90.33%, 93.5%, and 93.5% for distinguishing between five-stage, four-stage, three-stage, and two distinct two-stage sleep configurations, respectively. This combined feature extraction technique represents a novel addition to the body of research since it achieves higher performance than many recently developed deep neural networks by utilising simpler machine-learning models.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Classification of EEG Signals Using Hybrid Feature Extraction and Ensemble Extreme Learning Machine
    Ren, Weijie
    Han, Min
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1281 - 1301
  • [22] Electromyography based hand movement classification and feature extraction using machine learning algorithms
    Ekinci, Ekin
    Garip, Zeynep
    Serbest, Kasim
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2023, 26 (04):
  • [23] Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques
    Hafeez Ullah Amin
    Aamir Saeed Malik
    Rana Fayyaz Ahmad
    Nasreen Badruddin
    Nidal Kamel
    Muhammad Hussain
    Weng-Tink Chooi
    Australasian Physical & Engineering Sciences in Medicine, 2015, 38 : 139 - 149
  • [24] Paralinguistic and spectral feature extraction for speech emotion classification using machine learning techniques
    Liu, Tong
    Yuan, Xiaochen
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2023, 2023 (01)
  • [25] Paralinguistic and spectral feature extraction for speech emotion classification using machine learning techniques
    Tong Liu
    Xiaochen Yuan
    EURASIP Journal on Audio, Speech, and Music Processing, 2023
  • [26] Feature Extraction, Feature Selection and Machine Learning for Image Classification: A Case Study
    Popescu, Madalina Cosmina
    Sasu, Lucian Mircea
    2014 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), 2014, : 968 - 973
  • [27] Pixel Level Feature Extraction and Machine Learning Classification for Water Body Extraction
    Rajendiran, Nagaraj
    Kumar, Lakshmi Sutha
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 9905 - 9928
  • [28] Pixel Level Feature Extraction and Machine Learning Classification for Water Body Extraction
    Nagaraj Rajendiran
    Lakshmi Sutha Kumar
    Arabian Journal for Science and Engineering, 2023, 48 : 9905 - 9928
  • [29] Unsupervised Feature Learning Classification Using An Extreme Learning Machine
    Lam, Dao
    Wunsch, Donald
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [30] Machine-Learning-Based Hotspot Detection Using Topological Classification and Critical Feature Extraction
    Yu, Yen-Ting
    Lin, Geng-He
    Jiang, Iris Hui-Ru
    Chiang, Charles
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (03) : 460 - 470