Spontaneous Chiral Symmetry Breaking and Lane Formation in Ferromagnetic Ferrofluids

被引:5
|
作者
Vilfan, Mojca [1 ,2 ,3 ]
Lampret, Borut [1 ]
Gregorin, Ziga [1 ]
Cmok, Luka [1 ]
Vilfan, Andrej [1 ]
Klepp, Juergen [4 ]
Kohlbrecher, Joachim [5 ]
Hribar Bostjancic, Patricija [1 ]
Lisjak, Darja [1 ]
Mertelj, Alenka [1 ]
机构
[1] J Stefan Inst, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[3] Max Planck Inst Dynam & Selforg MPIDS, Gottingen, Germany
[4] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[5] Lab Neutron Scattering & Imaging, CH-5232 Psi Villigen, Switzerland
关键词
active matter; chiral symmetry breaking; ferrofluids; ferromagnetism; SUSPENSIONS;
D O I
10.1002/smll.202304387
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ferromagnetic ferrofluids are synthetic materials consisting of magnetic nanoplatelets dispersed in an isotropic fluid. Their main characteristics are the formation of stable magnetic domains and the presence of macroscopic magnetization even in the absence of a magnetic field. Here, the authors report on the experimental observation of spontaneous stripe formation in a ferromagnetic ferrofluid in the presence of an oscillating external magnetic field. The striped structure is identified as elongated magnetic domains, which exhibit reorientation upon reversal of the magnetic field. The stripes are oriented perpendicular to the magnetic field and are separated by alternating flow lanes. The velocity profile is measured using a space-time correlation technique that follows the motion of the thermally excited fluctuations in the sample. The highest velocities are found in the depleted regions between individual domains and reach values up to several mu m s(-1). The fluid in adjacent lanes moves in the opposite directions despite the applied magnetic field being uniform. The formation of bidirectional flow lanes can be explained by alternating rotation of magnetic nanoparticles in neighboring stripes, which indicates spontaneous breaking of the chiral symmetry in the sample.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior
    Kondepudi, DK
    Asakura, K
    ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (12) : 946 - 954
  • [32] SPONTANEOUS CHIRAL SYMMETRY-BREAKING IN PARTICLE PHYSICS
    OKUMURA, Y
    PHYSICS LETTERS B, 1985, 156 (3-4) : 259 - 262
  • [33] ALTERNATIVE SCHEME OF SPONTANEOUS CHIRAL SYMMETRY-BREAKING
    CHRISTOS, GA
    AUSTRALIAN JOURNAL OF PHYSICS, 1986, 39 (03): : 347 - 367
  • [34] Spontaneous Chiral Symmetry Breaking of (Thio)semicarbazide Compounds
    Lin Lirong
    Hu Wangxia
    Ma Jie
    Zhang Hui
    Huang Rongbin
    Zheng Lansun
    ACTA CHIMICA SINICA, 2010, 68 (07) : 703 - 706
  • [35] Spontaneous Chiral Symmetry Breaking of Hall Magnetohydrodynamic Turbulence
    Meyrand, Romain
    Galtier, Sebastien
    PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [36] Spontaneous chiral symmetry breaking in the linked cluster expansion
    Szczepaniak, AP
    Krupinski, P
    PHYSICAL REVIEW D, 2002, 66 (09)
  • [37] Microcavity Sensor Enhanced by Spontaneous Chiral Symmetry Breaking
    Li, Yi-Yi
    Cao, Qi-Tao
    Chen, Jin-hui
    Yu, Xiao-Chong
    Xiao, Yun-Feng
    PHYSICAL REVIEW APPLIED, 2021, 16 (04)
  • [38] Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking
    Alexandru, Andrei
    Horvath, Ivan
    EXTREME QCD 2012 (XQCD), 2013, 432
  • [39] Spontaneous PT symmetry breaking of a ferromagnetic superfluid in a gradient field
    Vanderbruggen, T.
    Palacios Alvarez, Silvana
    Coop, S.
    Martinez de Escobar, N.
    Mitchell, M. W.
    EPL, 2015, 111 (06)
  • [40] Spontaneous symmetry breaking: formation of Janus micelles
    Voets, Ilja K.
    Fokkink, Remco
    Hellweg, Thomas
    King, Stephen M.
    de Waard, Pieter
    de Keizer, Arie
    Stuart, Martien A. Cohen
    SOFT MATTER, 2009, 5 (05) : 999 - 1005