Hopf Bifurcation, Periodic Solutions, and Control of a New 4D Hyperchaotic System

被引:3
|
作者
Liu, Yu [1 ]
Zhou, Yan [1 ,2 ]
Guo, Biyao [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R China
[2] Inner Mongolia Normal Univ, Ctr Appl Math Sci, Hohhot 010022, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperchaotic system; Hopf bifurcation; periodic solutions; hyperchaos control; normal form theory; CHAOTIC SYSTEM; SYNCHRONIZATION; CIRCUIT;
D O I
10.3390/math11122699
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new four-dimensional (4D) hyperchaotic biplane system is designed and presented. The dynamical properties of this new system are studied by means of tools such as bifurcation diagrams, Lyapunov exponents and phase diagrams. The Hopf bifurcation and periodic solutions of this hyperchaotic system are solved analytically. In addition, a new hyperchaotic control strategy is applied, and a comparative analysis of the controlled system is performed.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Local Hopf bifurcation and global existence of periodic solutions in TCP system
    徐昌进
    唐先华
    廖茂新
    AppliedMathematicsandMechanics(EnglishEdition), 2010, 31 (06) : 775 - 786
  • [32] Local Hopf bifurcation and global existence of periodic solutions in TCP system
    Xu, Chang-jin
    Tang, Xian-hua
    Liao, Mao-xin
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (06) : 775 - 786
  • [33] Local Hopf bifurcation and global existence of periodic solutions in TCP system
    Chang-jin Xu
    Xian-hua Tang
    Mao-xin Liao
    Applied Mathematics and Mechanics, 2010, 31 : 775 - 786
  • [34] A New 4D Hyperchaotic System and Its Generalized Function Projective Synchronization
    Gao, Yuan
    Liang, Chenghua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [35] Dynamics of a New Multistable 4D Hyperchaotic Lorenz System and Its Applications
    Leutcho, Gervais Dolvis
    Wang, Huihai
    Fozin, Theophile Fonzin
    Sun, Kehui
    Njitacke, Zeric Tabekoueng
    Kengne, Jacques
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (01):
  • [36] The Discrete Hamiltonian-Hopf Bifurcation for 4D Symplectic Maps
    Fontich, Ernest
    Simo, Carles
    Vieiro, Arturo
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 77 - 81
  • [37] A 4D hyperchaotic Lorenz-type system: zero-Hopf bifurcation, ultimate bound estimation, and its variable-order fractional network
    Li, Yuxi
    Wei, Zhouchao
    Aly, Ayman A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (10): : 1847 - 1858
  • [38] A 4D hyperchaotic Lorenz-type system: zero-Hopf bifurcation, ultimate bound estimation, and its variable-order fractional network
    Yuxi Li
    Zhouchao Wei
    Ayman A. Aly
    The European Physical Journal Special Topics, 2022, 231 : 1847 - 1858
  • [39] On the periodic orbits bifurcating from a fold Hopf bifurcation in two hyperchaotic systems
    Matouk, A. E.
    OPTIK, 2015, 126 (24): : 4890 - 4895
  • [40] Hopf bifurcation and stability of periodic solutions in a delayed eco-epidemiological system
    Zhang, Jia-Fang
    Li, Wan-Tong
    Yan, Xiang-Ping
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) : 865 - 876