Class Balanced Adaptive Pseudo Labeling for Federated Semi-Supervised Learning

被引:16
|
作者
Li, Ming [1 ]
Li, Qingli [1 ]
Wang, Yan [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.01563
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on federated semi-supervised learning (FSSL), assuming that few clients have fully labeled data (labeled clients) and the training datasets in other clients are fully unlabeled (unlabeled clients). Existing methods attempt to deal with the challenges caused by not independent and identically distributed data (Non-IID) setting. Though methods such as sub-consensus models have been proposed, they usually adopt standard pseudo labeling or consistency regularization on unlabeled clients which can be easily influenced by imbalanced class distribution. Thus, problems in FSSL are still yet to be solved. To seek for a fundamental solution to this problem, we present Class Balanced Adaptive Pseudo Labeling (CBAFed), to study FSSL from the perspective of pseudo labeling. In CBAFed, the first key element is a fixed pseudo labeling strategy to handle the catastrophic forgetting problem, where we keep a fixed set by letting pass information of unlabeled data at the beginning of the unlabeled client training in each communication round. The second key element is that we design class balanced adaptive thresholds via considering the empirical distribution of all training data in local clients, to encourage a balanced training process. To make the model reach a better optimum, we further propose a residual weight connection in local supervised training and global model aggregation. Extensive experiments on five datasets demonstrate the superiority of CBAFed. Code will be available at https://github.com/minglllli/CBAFed.
引用
收藏
页码:16292 / 16301
页数:10
相关论文
共 50 条
  • [41] Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition
    Higuchi, Yosuke
    Moritz, Niko
    Le Roux, Jonathan
    Hori, Takaaki
    INTERSPEECH 2021, 2021, : 726 - 730
  • [42] Federated Active Semi-Supervised Learning With Communication Efficiency
    Zhang, Chen
    Xie, Yu
    Bai, Hang
    Hu, Xiongwei
    Yu, Bin
    Gao, Yuan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (11): : 6744 - 6756
  • [43] Semi-supervised federated learning on evolving data streams
    Mawuli, Cobbinah B.
    Kumar, Jay
    Nanor, Ebenezer
    Fu, Shangxuan
    Pan, Liangxu
    Yang, Qinli
    Zhang, Wei
    Shao, Junming
    INFORMATION SCIENCES, 2023, 643
  • [44] Federated Cycling (FedCy): Semi-Supervised Federated Learning of Surgical Phases
    Kassem, Hasan
    Alapatt, Deepak
    Mascagni, Pietro
    Karargyris, Alexandros
    Padoy, Nicolas
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (07) : 1920 - 1931
  • [45] Federated Learning in Healthcare with Unsupervised and Semi-Supervised Methods
    Panos-Basterra, Juan
    Dolores Ruiz, M.
    Martin-Bautista, Maria J.
    FLEXIBLE QUERY ANSWERING SYSTEMS, FQAS 2023, 2023, 14113 : 182 - 193
  • [46] Misbehavior detection system with semi-supervised federated learning
    Kristianto, Edy
    Lin, Po-Ching
    Hwang, Ren-Hung
    VEHICULAR COMMUNICATIONS, 2023, 41
  • [47] Uncertainty Minimization for Personalized Federated Semi-Supervised Learning
    Shi, Yanhang
    Chen, Siguang
    Zhang, Haijun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 1060 - 1073
  • [48] SEMI-SUPERVISED 3D OBJECT DETECTION VIA ADAPTIVE PSEUDO-LABELING
    Xu, Hongyi
    Liu, Fengqi
    Zhou, Qianyu
    Hao, Jinkun
    Cao, Zhijie
    Feng, Zhengyang
    Ma, Lizhuang
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3183 - 3187
  • [49] FedCD: Federated Semi-Supervised Learning with Class Awareness Balance via Dual Teachers
    Liu, Yuzhi
    Wu, Huisi
    Qin, Jing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3837 - 3845
  • [50] Federated Semi-Supervised Learning for Medical Image Segmentation via Pseudo-Label Denoising
    Qiu, Liang
    Cheng, Jierong
    Gao, Huxin
    Xiong, Wei
    Ren, Hongliang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 4672 - 4683