Globally stable cylinders for hyperbolic CAT(0) cube complexes

被引:0
|
作者
Lazarovich, Nir [1 ]
Sageev, Michah [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
CAT(0) cube complexes; hyperbolic groups;
D O I
10.4171/GGD/744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rips and Sela (1995) introduced the notion of globally stable cylinders and asked if all Gromov hyperbolic groups admit such. We prove that hyperbolic cubulated groups admit globally stable cylinders.
引用
收藏
页码:203 / 211
页数:9
相关论文
共 50 条
  • [21] Resolutions of CAT(0) cube complexes and accessibility properties
    Beeker, Benjamin
    Lazarovich, Nir
    Algebraic and Geometric Topology, 2016, 16 (04): : 2045 - 2065
  • [22] Coning-off CAT(0) cube complexes
    Genevois, Anthony
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (03) : 1535 - 1599
  • [23] The Furstenberg-Poisson boundary and CAT(0) cube complexes
    Fernos, Talia
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 2180 - 2223
  • [24] Isometries of CAT(0) cube complexes are semi-simple
    Haglund, Frederic
    ANNALES MATHEMATIQUES DU QUEBEC, 2023, 47 (02): : 249 - 261
  • [25] Folding-like techniques for CAT(0) cube complexes
    Ben-zvi, Michael
    Kropholler, Robert
    Lyman, Rylee Alanza
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (01) : 227 - 238
  • [26] CAT(0) cube complexes are determined by their boundary cross ratio
    Beyrer, Jonas
    Fioravanti, Elia
    Incerti-Medici, Merlin
    GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (01) : 313 - 333
  • [27] Top-dimensional quasiflats in CAT(0) cube complexes
    Huang, Jingyin
    GEOMETRY & TOPOLOGY, 2017, 21 (04) : 2281 - 2352
  • [28] Isometries of CAT(0) cube complexes are semi-simple
    Frédéric Haglund
    Annales mathématiques du Québec, 2023, 47 : 249 - 261
  • [29] The median class and superrigidity of actions on CAT(0) cube complexes
    Chatterji, Indira
    Fernos, Talia
    Iozzi, Alessandra
    Caprace, Pierre-Emmanuel
    JOURNAL OF TOPOLOGY, 2016, 9 (02) : 349 - 400
  • [30] Contractible, hyperbolic but non-CAT(0) complexes
    Richard C. H. Webb
    Geometric and Functional Analysis, 2020, 30 : 1439 - 1463