Using Ensemble Machine Learning to Estimate International Roughness Index of Asphalt Pavements

被引:1
|
作者
Baykal, Tahsin [1 ]
Ergezer, Fatih [2 ]
Eriskin, Ekinhan [3 ]
Terzi, Serdal [2 ]
机构
[1] Suleyman Demirel Univ, Grad Sch Nat & Appl Sci, TR-32260 Isparta, Turkiye
[2] Suleyman Demirel Univ, Engn Fac, Dept Civil Engn, TR-32260 Isparta, Turkiye
[3] Suleyman Demirel Univ, Property Protect & Secur Dept, TR-32260 Isparta, Turkiye
关键词
International Roughness Index; Ensemble learning; Pavement management system; Explainable artificial intelligence methods; Shapley Additive eXplanations; REGRESSION; IRI;
D O I
10.1007/s40996-023-01320-6
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study utilized an ensemble machine learning algorithm to estimate the International Roughness Index (IRI) for pavement roughness evaluation. The ensemble models, including decision tree, AdaBoosting, random forest, extra tree, gradient boosting, and XGBoosting, were developed using AGE, sum ESALs, and structural number as input parameters. The random forest algorithm produced the best model with high accuracy, achieving an R2 value of 0.996 and low errors (RMSE: 0.103, MAE: 0.013, and MAPE: 4.519) on the test set. The Shapley Additive exPlanations method was employed for explainability. The findings indicate that AGE is the most influential parameter in estimating IRI. The proposed algorithm holds promise for effective pavement management system applications. End users can estimate the IRI value based on the given decisions tree for this aim.
引用
收藏
页码:2773 / 2784
页数:12
相关论文
共 50 条
  • [31] Modeling the international roughness index performance on semi-rigid pavements in single carriageway roads
    Perez-Acebo, Heriberto
    Gonzalo-Orden, Hernan
    Findley, Daniel J.
    Roji, Eduardo
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 272
  • [32] Roughness Progression Model for Asphalt Pavements Using Long-Term Pavement Performance Data
    Meegoda, Jay N.
    Gao, Shengyan
    JOURNAL OF TRANSPORTATION ENGINEERING, 2014, 140 (08)
  • [33] A Machine Learning Based Novel Approach of Predicting International Roughness Index(IRI) from Traffic Characteristics using Random Forest Regression
    Abir, Abrar Rahman
    PROCEEDINGS OF 2023 6TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, AICCC 2023, 2023, : 36 - 45
  • [34] Public policymaking for international agricultural trade using association rules and ensemble machine learning
    Batarseh, Feras A.
    Gopinath, Munisamy
    Monken, Anderson
    Gu, Zhengrong
    MACHINE LEARNING WITH APPLICATIONS, 2021, 5
  • [35] Piezoresistivity assessment of self-sensing asphalt-based pavements with machine learning algorithm
    Deng, Zhizhong
    Nguyen, Quang Dieu
    Mahmood, Aziz Hasan
    Pang, Yu
    Shi, Tianxing
    Sheng, Daichao
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 468
  • [36] Empirical Model for the Retained Stability Index of Asphalt Mixtures Using Hybrid Machine Learning Approach
    Jweihan, Yazeed S.
    Al-Kheetan, Mazen J.
    Rabi, Musab
    APPLIED SYSTEM INNOVATION, 2023, 6 (05)
  • [37] An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
    Wang, Lingfei
    Abramowitz, Gab
    Wang, Ying-Ping
    Pitman, Andy
    Viscarra Rossel, Raphael A.
    SOIL, 2024, 10 (02) : 619 - 636
  • [38] Machine learning techniques to estimate the degree of binder activity of reclaimed asphalt pavement
    Ramon Botella
    Davide Lo Presti
    Kamilla Vasconcelos
    Kinga Bernatowicz
    Adriana H. Martínez
    Rodrigo Miró
    Luciano Specht
    Edith Arámbula Mercado
    Gustavo Menegusso Pires
    Emiliano Pasquini
    Chibuike Ogbo
    Francesco Preti
    Marco Pasetto
    Ana Jiménez del Barco Carrión
    Antonio Roberto
    Marko Orešković
    Kranthi K. Kuna
    Gurunath Guduru
    Amy Epps Martin
    Alan Carter
    Gaspare Giancontieri
    Ahmed Abed
    Eshan Dave
    Gabrielle Tebaldi
    Materials and Structures, 2022, 55
  • [39] Machine learning techniques to estimate the degree of binder activity of reclaimed asphalt pavement
    Botella, Ramon
    Lo Presti, Davide
    Vasconcelos, Kamilla
    Bernatowicz, Kinga
    Martinez, Adriana H.
    Miro, Rodrigo
    Specht, Luciano
    Mercado, Edith Arambula
    Pires, Gustavo Menegusso
    Pasquini, Emiliano
    Ogbo, Chibuike
    Preti, Francesco
    Pasetto, Marco
    del Barco Carrion, Ana Jimenez
    Roberto, Antonio
    Oreskovic, Marko
    Kuna, Kranthi K.
    Guduru, Gurunath
    Martin, Amy Epps
    Carter, Alan
    Giancontieri, Gaspare
    Abed, Ahmed
    Dave, Eshan
    Tebaldi, Gabrielle
    MATERIALS AND STRUCTURES, 2022, 55 (04)
  • [40] Automated Distress Detection and Measurement in Urban Asphalt Pavements Using Deep Learning
    Gomez, Paulina
    Osorio, Aleli
    Allende, Hector
    COMPUTING IN CIVIL ENGINEERING 2023-VISUALIZATION, INFORMATION MODELING, AND SIMULATION, 2024, : 485 - 492