Using Ensemble Machine Learning to Estimate International Roughness Index of Asphalt Pavements

被引:1
|
作者
Baykal, Tahsin [1 ]
Ergezer, Fatih [2 ]
Eriskin, Ekinhan [3 ]
Terzi, Serdal [2 ]
机构
[1] Suleyman Demirel Univ, Grad Sch Nat & Appl Sci, TR-32260 Isparta, Turkiye
[2] Suleyman Demirel Univ, Engn Fac, Dept Civil Engn, TR-32260 Isparta, Turkiye
[3] Suleyman Demirel Univ, Property Protect & Secur Dept, TR-32260 Isparta, Turkiye
关键词
International Roughness Index; Ensemble learning; Pavement management system; Explainable artificial intelligence methods; Shapley Additive eXplanations; REGRESSION; IRI;
D O I
10.1007/s40996-023-01320-6
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study utilized an ensemble machine learning algorithm to estimate the International Roughness Index (IRI) for pavement roughness evaluation. The ensemble models, including decision tree, AdaBoosting, random forest, extra tree, gradient boosting, and XGBoosting, were developed using AGE, sum ESALs, and structural number as input parameters. The random forest algorithm produced the best model with high accuracy, achieving an R2 value of 0.996 and low errors (RMSE: 0.103, MAE: 0.013, and MAPE: 4.519) on the test set. The Shapley Additive exPlanations method was employed for explainability. The findings indicate that AGE is the most influential parameter in estimating IRI. The proposed algorithm holds promise for effective pavement management system applications. End users can estimate the IRI value based on the given decisions tree for this aim.
引用
收藏
页码:2773 / 2784
页数:12
相关论文
共 50 条
  • [1] International Roughness Index prediction for flexible pavements using novel machine learning techniques
    Kaloop, Mosbeh R.
    El-Badawy, Sherif M.
    Hu, Jong Wan
    El-Hakim, Ragaa T. Abd
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [2] International Roughness Index Prediction for Jointed Plain Concrete Pavements Using Regression and Machine Learning Techniques
    Suliman, Amany M.
    Awed, Ahmed M.
    Abd El-Hakim, Ragaa T.
    El-Badawy, Sherif M.
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (02) : 235 - 250
  • [3] Improving asphalt mix design considering international roughness index of asphalt pavement predicted using autoencoders and machine learning
    Liu, Jian
    Liu, Fangyu
    Zheng, Chuanfeng
    Fanijo, Ebenezer O.
    Wang, Linbing
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 360
  • [4] Machine Learning for Prediction of the International Roughness Index on Flexible Pavements: A Review, Challenges, and Future Directions
    Tamagusko, Tiago
    Ferreira, Adelino
    INFRASTRUCTURES, 2023, 8 (12)
  • [5] Determination of ride comfort thresholds based on international roughness index for asphalt concrete pavements
    Kirbas, Ufuk
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2023, 24 (01)
  • [6] Evaluation of international roughness index for asphalt overlays placed over cracked and seated concrete pavements
    Rahim, A. M.
    Fiegel, Gregg
    Ghuzlan, Khalid
    Khumann, Dan
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2009, 10 (03) : 201 - 207
  • [7] International Roughness Index Prediction of Flexible Pavements Using Neural Networks
    Hossain, M., I
    Gopisetti, L. S. P.
    Miah, M. S.
    JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2019, 145 (01):
  • [8] Influence Analysis of Pavement Distress on International Roughness Index Using Machine Learning
    Kwon, Kibeom
    Choi, Hangseok
    Pham, Khanh
    Kim, Sangwoo
    Bae, Abraham
    KSCE JOURNAL OF CIVIL ENGINEERING, 2024, 28 (10) : 4344 - 4355
  • [9] A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements
    Kaloop, Mosbeh R.
    El-Badawy, Sherif M.
    Ahn, Jungkyu
    Sim, Hyoung-Bo
    Hu, Jong Wan
    Abd El-Hakim, Ragaa T.
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2022, 23 (03) : 862 - 876
  • [10] International Roughness Index Prediction Model for Thin Hot Mix Asphalt Overlay Treatment of Flexible Pavements
    Qian, Jinsong
    Jin, Chen
    Zhang, Jiake
    Ling, Jianming
    Sun, Chao
    TRANSPORTATION RESEARCH RECORD, 2018, 2672 (40) : 7 - 13