Perturbative contributions to Δα(5) (MZ2)

被引:0
|
作者
Erler, Jens [1 ]
Ferro-Hernandez, Rodolfo [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany
来源
关键词
Electroweak Precision Physics; Standard Model Parameters; Higher Order Electroweak Calculations; VACUUM POLARIZATION FUNCTION; QUARK CURRENT CORRELATORS; SUM-RULES; QCD; MOMENTS; O(ALPHA(2)(S)); MASSES;
D O I
10.1007/JHEP12(2023)131
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute a theoretically driven prediction for the hadronic contribution to the electromagnetic running coupling at the Z scale using lattice QCD and state-of-the-art perturbative QCD. We obtain Delta alpha((5) )(M-Z(2)) = [279.5 +/- 0.9 +/- 0.59] x 10(-4 )(Mainz Collaboration)Delta alpha((5) )(M-Z(2)) = [278.42 +/- 0.22 +/- 0.59] x 10(-4 )(BMW Collaboration),where the first error is the quoted lattice uncertainty. The second is due to perturbative QCD, and is dominated by the parametric uncertainty on alpha(<^>)(s), which is based on a rather conservative error. Using instead the PDG average, we find a total error on Delta alpha((5) )(M-Z(2)) of 0.4 x 10(-4). Furthermore, with a particular emphasis on the charm quark contributions, we also update Delta alpha((5) )(M-Z(2)) when low-energy cross-section data is used as an input, obtaining Delta alpha((5) )(M-Z(2)) = [276.29 +/- 0.38 +/- 0.62] x 10(-4). The difference between lattice QCD and cross-section-driven results reflects the known tension between both methods in the computation of the anomalous magnetic moment of the muon. Our results are expressed in a way that will allow straight
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Erratum to: Direct measurement of αQED(mZ2) at the FCC-ee
    Patrick Janot
    Journal of High Energy Physics, 2017
  • [22] A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2) (vol 80, 241, 2020)
    Davier, M.
    Hoecker, A.
    Malaescu, B.
    Zhang, Z.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (05):
  • [23] Refinement of the hadronic contribution to the muon anomalous magnetic moment and to α(Mz2)
    B. V. Geshkenbein
    Journal of Experimental and Theoretical Physics Letters, 2003, 77 : 603 - 605
  • [24] The uncertainty in αS(MZ2) determined from hadronic tau decay measurements
    Maxwell, CJ
    Tonge, DG
    NUCLEAR PHYSICS B, 1998, 535 (1-2) : 19 - 40
  • [25] g-2 of charged leptons, α(MZ2), and the hyperfine splitting of muonium
    Keshavarzi, Alexander
    Nomura, Daisuke
    Teubner, Thomas
    PHYSICAL REVIEW D, 2020, 101 (01)
  • [26] 论不定方程x2+y2=mz2的解
    戎士奎
    贵州大学学报(自然科学版), 1993, (01) : 17 - 21
  • [27] Muon g-2 and α(MZ2): A new data-based analysis
    Keshavarzi, Alexander
    Nomura, Daisuke
    Teubner, Thomas
    PHYSICAL REVIEW D, 2018, 97 (11)
  • [28] (g-2)μ and α(MZ2) re-evaluated using new precise data
    Hagiwara, Kaoru
    Liao, Ruofan
    Martin, Alan D.
    Nomura, Daisuke
    Teubner, Thomas
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2011, 38 (08)
  • [29] Predictions for g-2 of the muon and αQED(MZ2) -: art. no. 093003
    Hagiwara, K
    Martin, AD
    Nomura, D
    Teubner, T
    PHYSICAL REVIEW D, 2004, 69 (09)
  • [30] 关于MZ1元、MZ2元和MB1元的误差估计
    徐林荣
    高校应用数学学报A辑(中文版), 1993, (03) : 262 - 272