Detection of Rice Pests Based on Self-Attention Mechanism and Multi-Scale Feature Fusion

被引:25
|
作者
Hu, Yuqi [1 ,2 ,3 ,4 ]
Deng, Xiaoling [1 ,2 ,3 ,4 ]
Lan, Yubin [1 ,2 ,3 ,4 ]
Chen, Xin [1 ,2 ,3 ,4 ]
Long, Yongbing [1 ,2 ,3 ,4 ]
Liu, Cunjia [5 ]
机构
[1] South China Agr Univ, Coll Elect Engn, Coll Artificial Intelligence, Guangzhou 510642, Peoples R China
[2] Natl Ctr Int Collaborat Res Precis Agr Aviat Pesti, Guangzhou 510642, Peoples R China
[3] Guangdong Lab Lingnan Modern Agr, Guangzhou 510642, Peoples R China
[4] Guangdong Engn Technol Res Ctr Smart Agr, Guangzhou 510642, Peoples R China
[5] Loughborough Univ, Unmanned Vehicles Dept Aeronaut & Automot Engn, Loughborough LE11 3TU, Leics, England
基金
中国国家自然科学基金;
关键词
rice pest detection; YOLOv5; Swin Transformer; BiFPN; self-attention; CLASSIFICATION;
D O I
10.3390/insects14030280
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Simple Summary Various types of rice pests cause huge losses to rice production every year in China. In this paper, a deep neural network for pest detection and classification via digital images is proposed. The targeted optimization is improved for the pest characteristics. Our experiments determined that our model has a higher accuracy and detection speed compared with other methods. In addition, it can be more widely used in pest detection surveys for various crops. In recent years, the occurrence of rice pests has been increasing, which has greatly affected the yield of rice in many parts of the world. The prevention and cure of rice pests is urgent. Aiming at the problems of the small appearance difference and large size change of various pests, a deep neural network named YOLO-GBS is proposed in this paper for detecting and classifying pests from digital images. Based on YOLOv5s, one more detection head is added to expand the detection scale range, the global context (GC) attention mechanism is integrated to find targets in complex backgrounds, PANet is replaced by BiFPN network to improve the feature fusion effect, and Swin Transformer is introduced to take full advantage of the self-attention mechanism of global contextual information. Results from experiments on our insect dataset containing Crambidae, Noctuidae, Ephydridae, and Delphacidae showed that the average mAP of the proposed model is up to 79.8%, which is 5.4% higher than that of YOLOv5s, and the detection effect of various complex scenes is significantly improved. In addition, the paper analyzes and discusses the generalization ability of YOLO-GBS model on a larger-scale pest data set. This research provides a more accurate and efficient intelligent detection method for rice pests and others crop pests.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Fine-Grained Detection Model Based on Attention Mechanism and Multi-Scale Feature Fusion for Cocoon Sorting
    Zheng, Han
    Guo, Xueqiang
    Ma, Yuejia
    Zeng, Xiaoxi
    Chen, Jun
    Zhang, Taohong
    AGRICULTURE-BASEL, 2024, 14 (05):
  • [42] MSSA-Net: A novel multi-scale feature fusion and global self-attention network for lesion segmentation
    Huang, Zhaohong
    Zhang, Xiangchen
    Zhang, Guowei
    Cai, Guorong
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (21):
  • [43] Chinese agricultural diseases and pests named entity recognition with multi-scale local context features and self-attention mechanism
    Guo, Xuchao
    Zhou, Han
    Su, Jie
    Hao, Xia
    Tang, Zhan
    Diao, Lei
    Li, Lin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 179
  • [44] Attention-based multi-scale feature fusion for free-space detection
    Song, Pengfei
    Fan, Hui
    Li, Jinjiang
    Hua, Feng
    IET INTELLIGENT TRANSPORT SYSTEMS, 2022, 16 (09) : 1222 - 1235
  • [45] 3D Object Detection Based on Attention and Multi-Scale Feature Fusion
    Liu, Minghui
    Ma, Jinming
    Zheng, Qiuping
    Liu, Yuchen
    Shi, Gang
    SENSORS, 2022, 22 (10)
  • [46] Drone Detection Based on Multi-scale Feature Fusion
    Zeng, Zhenni
    Wang, Zhenning
    Qin, Lang
    Li, Hui
    2021 6TH INTERNATIONAL CONFERENCE ON UK-CHINA EMERGING TECHNOLOGIES (UCET 2021), 2021, : 194 - 198
  • [47] Multi-Scale Feature Attention Fusion for Image Splicing Forgery Detection
    Liang, Enji
    Zhang, Kuiyuan
    Hua, Zhongyun
    Jia, Xiaohua
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (01)
  • [48] Small Object Detection using Multi-scale Feature Fusion and Attention
    Liu, Baokai
    Du, Shiqiang
    Li, Jiacheng
    Wang, Jianhua
    Liu, Wenjie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7246 - 7251
  • [49] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [50] Hierarchical Feature Fusion With Text Attention For Multi-scale Text Detection
    Liu, Chao
    Zou, Yuexian
    Guan, Wenjie
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,