Real-time detection of abnormal driving behavior based on long short-term memory network and regression residuals

被引:28
|
作者
Ma, Yongfeng [1 ]
Xie, Zhuopeng [1 ]
Chen, Shuyan [1 ]
Qiao, Fengxiang [2 ]
Li, Zeyang [1 ]
机构
[1] Southeast Univ, Sch Transportat, Jiangsu Key Lab Urban ITS, Nanjing 211189, Peoples R China
[2] Texas Southern Univ, Innovat Transportat Res Inst, Houston, TX 77004 USA
基金
中国国家自然科学基金;
关键词
Real-time abnormal driving behavior detection; Long short-term memory (LSTM) network; Residual algorithm; Smartphone; ANOMALY DETECTION; IDENTIFICATION; CLASSIFICATION;
D O I
10.1016/j.trc.2022.103983
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Abnormal driving behavior is one of the main causes of roadway collisions. In most studies of abnormal driving behavior, the abnormal driving status is detected and analyzed using classification algorithms directly or using unsupervised learning algorithms to classify reconstruction or prediction residuals. However, abnormal driving behavior data are difficult to acquire and label. Also, a class imbalance issue is inherent in the algorithm training process due to the relatively sparse data for abnormal driving behavior. Moreover, current studies that include residual analysis tend to focus on individual points and thus fail to capture the continuity characteristic of abnormal driving behavior.To address these problems, a long short-term memory-residual (LSTM-R) algorithm is proposed to detect abnormal driving behavior in real time. The proposed algorithm (referred to simply as LSTM-R) has two steps. First, an LSTM network is used to fit the current vehicle kinematic data based on historical data to obtain the root mean square residual at each moment. Second, a time window -based residual algorithm is designed and employed to detect abnormal driving behavior accord-ing to the magnitude and continuity of the residuals. To verify the effectiveness of LSTM-R, an experimental test was conducted in Nanjing, China. The vehicle kinematic data were collected non -intrusively using a smartphone.In addition, AdaCost, SMOTEBoost, EasyEnsemble, LightGBM-residual, and linear regression -residual algorithms were employed for comparison with the proposed algorithm to assess its effectiveness. The effects of (1) the degree-of-fit of the LSTM network, (2) the LSTM-R parameters, and (3) the abnormal driving behavior percentage on the detection results were analyzed in detail. First, both the underfitting and overfitting of the LSTM network compromise the detection per-formance. Second, within a certain range of values, the LSTM-R parameters have little effect on the detection results. Third, the detection results are affected only slightly by the abnormal proportion. The results show that LSTM-R, with a maximum F1-score of 0.866, significantly outperforms the other five algorithms. Furthermore, even if only 10% abnormal driving behavior is in the training set, LSTM-R's F1-score can still be close to 0.86, indicating a significant relaxation of the re-quirements for labeled data. Also, the required data are easy to collect, which indicates LSTM-R's extensive application possibilities. This paper thus provides an effective method for the real-time detection of abnormal driving behavior and also supports driving risk assessment and driving behavior improvement with the overall goal to enhance roadway safety.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Multistage Real-Time Fire Detection Using Convolutional Neural Networks and Long Short-Term Memory Networks
    Manh Dung Nguyen
    Hoai Nam Vu
    Duc Cuong Pham
    Choi, Bokgil
    Ro, Soonghwan
    IEEE ACCESS, 2021, 9 : 146667 - 146679
  • [32] Predictive model for real-time energy disaggregation using long short-term memory
    Li, Bingbing
    Wu, Tongzi
    Bian, Shijie
    Sutherland, John W.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2023, 72 (01) : 25 - 28
  • [33] Hierarchical Long Short-Term Memory Network for Cyberattack Detection
    Hou, Haixia
    Xu, Yingying
    Chen, Menghan
    Liu, Zhi
    Guo, Wei
    Gao, Mingcheng
    Xin, Yang
    Cui, Lizhen
    IEEE ACCESS, 2020, 8 : 90907 - 90913
  • [34] Real-time Short-Term Trajectory Prediction Based on GRU Neural Network
    Han, Ping
    Wang, Wenqing
    Shi, Qingyan
    Yang, Jun
    2019 IEEE/AIAA 38TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2019,
  • [35] Real-time energy consumption prediction method for air-conditioning system based on long short-term memory neural network
    Zhao, Yifan
    Li, Wei
    Zhang, Jili
    Jiang, Changwei
    Chen, Siyu
    ENERGY AND BUILDINGS, 2023, 298
  • [36] Real-time trajectory prediction of laparoscopic instrument tip based on long short-term memory neural network in laparoscopic surgery training
    Wang, Ziheng
    Yan, Zhengxiang
    Xing, Yuan
    Wang, Honglei
    INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2022, 18 (06):
  • [37] Short-Term Photovoltaic Power Forecast Based on Long Short-Term Memory Network
    Shi, Min
    Xu, Ke
    Wang, Jue
    Yin, Rui
    Wang, Tieqiang
    Yong, Taiyou
    Hongyuan, Tianjin
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 2110 - 2116
  • [38] Monitoring Driving in a Monotonous Environment: Classification and Recognition of Driving Fatigue Based on Long Short-Term Memory Network
    Han, Hao
    Li, Kejie
    Li, Yi
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [39] Short-term wind power probability density prediction based on long short term memory network quantile regression
    Yin H.
    Huang S.
    Meng A.
    Liu Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (02): : 150 - 156
  • [40] Real-driving-implementable drowsy driving detection method using heart rate variability based on long short-term memory and autoencoder
    Fujiwara, Koichi
    Hori, Kentaro
    Fujiwara, Koichi
    Kano, Manabu
    IFAC PAPERSONLINE, 2021, 54 (15): : 526 - 531