PurposeDevelopment of an integrated time and dose model to explore the dynamics of gene expression alterations and identify biomarkers for biodosimetry following low- and high-dose irradiations at high dose rate.Material and methodsWe utilized multiple transcriptome datasets (GSE8917, GSE43151, and GSE23515) from Gene Expression Omnibus (GEO) for identifying candidate biological dosimeters. A linear mixed-effects model with random intercept was used to explore the dose-time dynamics of transcriptional responses and to functionally characterize the time- and dose-dependent changes in gene expression.ResultsWe identified genes that are correlated with dose and time and discovered two clusters of genes that are either positively or negatively correlated with both dose and time based on the parameters of the model. Genes in these two clusters may have persistent transcriptional alterations. Twelve potential transcriptional markers for dosimetry-ARHGEF3, BAX, BBC3, CCDC109B, DCP1B, DDB2, F11R, GADD45A, GSS, PLK3, TNFRSF10B, and XPC were identified. Of these genes, BAX, GSS, and TNFRSF10B are positively associated with both dose and time course, have a persistent transcriptional response, and might be better biological dosimeters.ConclusionsWith the proposed approach, we may identify candidate biomarkers that change monotonically in relation to dose, have a persistent transcriptional response, and are reliable over a wide dose range.