Maxima of the Q-index of non-bipartite graphs: Forbidden short odd cycles

被引:1
|
作者
Miao, Lu [1 ]
Liu, Ruifang [1 ]
Xue, Jie [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Spectral extrema; Q-index; Non-bipartite graph; Odd cycle; LAPLACIAN SPECTRAL-RADIUS; BOUNDS;
D O I
10.1016/j.dam.2023.06.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a non-bipartite graph which does not contain any odd cycle of length at most 2k + 1. In this paper, we determine the maximum Q-index of G if its order is fixed, and the corresponding extremal graph is uniquely characterized. Moreover, if the size of G is given, the maximum Q-index of G and the unique extremal graph are also proved.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 114
页数:11
相关论文
共 50 条
  • [41] Ordering non-bipartite unicyclic graphs with pendant vertices by the least Q-eigenvalue
    Shu-Guang Guo
    Xiaorong Liu
    Rong Zhang
    Guanglong Yu
    Journal of Inequalities and Applications, 2016
  • [42] Ordering non-bipartite unicyclic graphs with pendant vertices by the least Q-eigenvalue
    Guo, Shu-Guang
    Liu, Xiaorong
    Zhang, Rong
    Yu, Guanglong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 11
  • [43] The non-bipartite integral graphs with spectral radius three
    Chung, Taeyoung
    Koolen, Jack
    Sano, Yoshio
    Taniguchi, Tetsuji
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2544 - 2559
  • [44] On non-bipartite graphs with strong reciprocal eigenvalue property
    Barik, Sasmita
    Mishra, Rajiv
    Pati, Sukanta
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 107 - 128
  • [45] Inverses of non-bipartite unicyclic graphs with a unique perfect matching
    Kalita, Debajit
    Sarma, Kuldeep
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14): : 2765 - 2781
  • [46] Edge-maximal θ2k+1-free non-bipartite Hamiltonian graphs of odd order
    Jaradat, M. M. M.
    Baniabedalruhman, A.
    Bataineh, M. S.
    Jaradat, A. M. M.
    Al-Rhayyel, A. A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 282 - 286
  • [47] EXTREMAL NON-BIPARTITE REGULAR GRAPHS OF GIRTH-4
    BAUER, D
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (01) : 64 - 69
  • [48] On the least Q-eigenvalue of a non-bipartite hamiltonian graph
    Zhang, Rong
    Guo, Shu-Guang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 538 : 89 - 102
  • [49] The Largest Normalized Laplacian Spectral Radius of Non-Bipartite Graphs
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S77 - S87
  • [50] EXTREMAL NON-BIPARTITE REGULAR GRAPHS OF GIRTH-4
    ZHAO, DF
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (03) : 372 - 373