An effective detection and classification of road damages using hybrid deep learning framework

被引:10
|
作者
Deepa, D. [1 ]
Sivasangari, A. [2 ]
机构
[1] Sathyabama Inst Sci & Technol, Sch Comp, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
[2] Sathyabama Inst Sci & Technol, Sch Comp, Dept Informat Technol, Chennai, Tamil Nadu, India
关键词
Road damage detection; Feature extraction; Deep learning approach; Classification; Optimization; NEURAL-NETWORK;
D O I
10.1007/s11042-022-14001-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The monitoring of road surfaces is a critical thing in transport infrastructure management. The manual reporting process increases the processing delay and causes challenges in accuracy. Detecting road surface damages is important for improving the quality of transportation and avoiding several issues normal people face in daily life. Therefore, an automated monitoring system is needed to compute road surface conditions for effective road maintenance regularly. Accurately detecting and classifying road damage images become a challenging task for researchers. Thus, the proposed work introduced a hybrid deep learning framework for detecting and classifying road damage images. At first, the input images are acquired from the dataset and pre-processed with an adaptive intensity limited histogram equalization algorithm. This pre-processing method enhances the contrast of the given input images and eliminates the noise presented in the image. Then, the damage detection is performed in the segmentation stage using an adaptive density based fuzzy c-means clustering method. Features from the segmented images are extracted using Laplacian edge detection with Gaussian operator and hybrid wavelet-Walsh transform approaches. Subsequently, the dimensionality of the feature set is reduced by using the Adaptive Horse herd Optimization (AHO) algorithm. Finally, the road damages are detected and classified using the proposed Hybrid Deep Capsule autoencoder based Convolutional Neural network (Hybrid DCACN) with Improved Whale Optimization (IWO) model. The experimental validation is done using the RDD2020 dataset, and the performance metrics are evaluated to show the efficacy of the proposed model. The proposed work attains 98.815% accuracy, and the obtained results outperform the existing approaches.
引用
收藏
页码:18151 / 18184
页数:34
相关论文
共 50 条
  • [41] Deep Air Quality Forecasting Using Hybrid Deep Learning Framework
    Du, Shengdong
    Li, Tianrui
    Yang, Yan
    Horng, Shi-Jinn
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2412 - 2424
  • [42] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [43] A Deep Learning Framework for Detection and Classification of Implant Manufacturer using X-Ray Radiographs
    Sheetal, Attar Mahay
    Sreekumar, K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 756 - 765
  • [44] Edge AI-Based Automated Detection and Classification of Road Anomalies in VANET Using Deep Learning
    Bibi, Rozi
    Saeed, Yousaf
    Zeb, Asim
    Ghazal, Taher M.
    Rahman, Taj
    Said, Raed A.
    Abbas, Sagheer
    Ahmad, Munir
    Khan, Muhammad Adnan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [45] DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques
    Rahaman, Md Mamunur
    Li, Chen
    Yao, Yudong
    Kulwa, Frank
    Wu, Xiangchen
    Li, Xiaoyan
    Wang, Qian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
  • [46] A Hybrid Framework for Functional Verification using Reinforcement Learning and Deep Learning
    Singh, Karunveer
    Gupta, Rishabh
    Gupta, Vikram
    Fayyazi, Arash
    Pedram, Massoud
    Nazarian, Shahin
    GLSVLSI '19 - PROCEEDINGS OF THE 2019 ON GREAT LAKES SYMPOSIUM ON VLSI, 2019, : 367 - 370
  • [47] Road Marking Detection and Classification Using Machine Learning Algorithms
    Chen, Tairui
    Chen, Zhilu
    Shi, Quan
    Huang, Xinming
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 617 - 621
  • [48] An Effective Hybrid Model for Fake News Detection in Social Media Using Deep Learning Approach
    Raghavendra R.
    Niranjanamurthy M.
    SN Computer Science, 5 (4)
  • [49] RMDNet-Deep Learning Paradigms for Effective Malware Detection and Classification
    Puneeth, S.
    Lal, Shyam
    Pratap Singh, Mahendra
    Raghavendra, B. S.
    IEEE ACCESS, 2024, 12 : 82622 - 82635
  • [50] Hybrid deep learning model for detection and classification of lung cancer fusion images using MCNet
    Nandipati, Bhagya Lakshmi
    Devarakonda, Nagaraju
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (02) : 2235 - 2252