Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network

被引:14
|
作者
Nazari-Farsani, Sanaz [1 ]
Yu, Yannan [1 ,2 ]
Armindo, Rui Duarte [1 ,3 ]
Lansberg, Maarten [4 ]
Liebeskind, David S. [5 ]
Albers, Gregory [4 ]
Christensen, Soren [4 ]
Levin, Craig S. [1 ]
Zaharchuk, Greg [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Univ Massachusetts, Mem Med Ctr, Internal Med Dept, Boston, MA 02125 USA
[3] Hosp Beatriz Angelo, Dept Neuroradiol, Lisbon, Portugal
[4] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[5] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
关键词
Acute ischemic stroke; Lesion segmentation; MRI; DWI; PWI; Deep learning; INFARCT GROWTH; TISSUE; GADOLINIUM; PERFUSION;
D O I
10.1016/j.nicl.2022.103278
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background: For prognosis of stroke, measurement of the diffusion-perfusion mismatch is a common practice for estimating tissue at risk of infarction in the absence of timely reperfusion. However, perfusion-weighted imaging (PWI) adds time and expense to the acute stroke imaging workup. We explored whether a deep convolutional neural network (DCNN) model trained with diffusion-weighted imaging obtained at admission could predict final infarct volume and location in acute stroke patients.Methods: In 445 patients, we trained and validated an attention-gated (AG) DCNN to predict final infarcts as delineated on follow-up studies obtained 3 to 7 days after stroke. The input channels consisted of MR diffusionweighted imaging (DWI), apparent diffusion coefficients (ADC) maps, and thresholded ADC maps with values less than 620 x 10-6 mm2/s, while the output was a voxel-by-voxel probability map of tissue infarction. We evaluated performance of the model using the area under the receiver-operator characteristic curve (AUC), the Dice similarity coefficient (DSC), absolute lesion volume error, and the concordance correlation coefficient (rho c) of the predicted and true infarct volumes.Results: The model obtained a median AUC of 0.91 (IQR: 0.84-0.96). After thresholding at an infarction probability of 0.5, the median sensitivity and specificity were 0.60 (IQR: 0.16-0.84) and 0.97 (IQR: 0.93-0.99), respectively, while the median DSC and absolute volume error were 0.50 (IQR: 0.17-0.66) and 27 ml (IQR: 7-60 ml), respectively. The model's predicted lesion volumes showed high correlation with ground truth volumes (rho c = 0.73, p < 0.01). Conclusion: An AG-DCNN using diffusion information alone upon admission was able to predict infarct volumes at 3-7 days after stroke onset with comparable accuracy to models that consider both DWI and PWI. This may enable treatment decisions to be made with shorter stroke imaging protocols.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Prognosticating Acute Ischemic Stroke and Estimating the Feasibility of Mapping Stroke Volume to the Functional Outcomes Using Diffusion-Weighted Images: A Systematic Review Protocol
    Shridharan, Priyanka
    Gangil, Tarun
    Gorthi, Sankar Prasad
    Prakashini, K.
    ANNALS OF INDIAN ACADEMY OF NEUROLOGY, 2023, 26 (04) : 382 - 386
  • [42] Fully Deep Convolutional Neural Networks for Segmentation of the Prostate Gland in Diffusion-Weighted MR Images
    Clark, Tyler
    Wong, Alexander
    Haider, Masoom A.
    Khalvati, Farzad
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 97 - 104
  • [43] Lymphoma Lesions Detection from Whole Body Diffusion-Weighted Magnetic Resonance Images
    Ferjaoui, Radhia
    Cherni, Mohamed Ali
    Kraiem, Nour El Houda
    Kraiem, Tarek
    2018 5TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2018, : 364 - 369
  • [44] Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms
    Woo, Ilsang
    Lee, Areum
    Jung, Seung Chai
    Lee, Hyunna
    Kim, Namkug
    Cho, Se Jin
    Kim, Donghyun
    Lee, Jungbin
    Sunwoo, Leonard
    Kang, Dong-Wha
    KOREAN JOURNAL OF RADIOLOGY, 2019, 20 (08) : 1275 - 1284
  • [45] Quiet diffusion-weighted head scanning: Initial clinical evaluation in ischemic stroke patients at 1.5T
    Roesch, Julie
    Ott, Martin
    Heismann, Bjoern
    Doerfler, Arnd
    Engelhorn, Tobias
    Sembritzki, Klaus
    Grodzki, David M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 44 (05) : 1238 - 1243
  • [46] The frequency of new ischemic lesions in the first week after an acute stroke: A serial diffusion-weighted MRI study
    Kang, DW
    Ezzeddine, MA
    Chalela, JA
    Warach, S
    NEUROLOGY, 2002, 58 (07) : A424 - A425
  • [47] Ability of weakly supervised learning to detect acute ischemic stroke and hemorrhagic infarction lesions with diffusion-weighted imaging
    Cao, Chen
    Liu, Zhiyang
    Liu, Guohua
    Jin, Song
    Xia, Shuang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (01) : 321 - +
  • [48] Automatic processing of diffusion-weighted ischemic stroke images based on divergence measures: slice and hemisphere identification, and stroke region segmentation
    K. N. Bhanu Prakash
    Varsha Gupta
    Hu Jianbo
    Wieslaw L. Nowinski
    International Journal of Computer Assisted Radiology and Surgery, 2008, 3 : 559 - 570
  • [49] Automatic processing of diffusion-weighted ischemic stroke images based on divergence measures: slice and hemisphere identification, and stroke region segmentation
    Prakash, K. N. Bhanu
    Gupta, Varsha
    Hu Jianbo
    Nowinski, Wieslaw L.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2008, 3 (06) : 559 - 570
  • [50] Prostate lesions characterization using diffusion-weighted spatiotemporal encoded MRI: Feasibility and initial assessment
    Otikovs, Martins
    Portnoy, Orith
    Anaby, Debbie
    Rosenzweig, Barak
    Nissan, Noam
    Frydman, Lucio
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (02) : 643 - 654