Air Conditioning Systems Fault Detection and Diagnosis-Based Sensing and Data-Driven Approaches

被引:2
|
作者
Elmouatamid, Abdellatif [1 ]
Fricke, Brian [2 ]
Sun, Jian [3 ]
Pong, Philip W. T. [1 ]
机构
[1] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
[2] Oak Ridge Natl Lab, Bldg Equipment Res, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Multifunct Equipment Integrat, Oak Ridge, TN 37831 USA
关键词
air conditioning; data-driven approaches; energy efficiency; fault detection and diagnosis; power optimization; process history-based; sensor technologies; simultaneous faults; BUILDING SYSTEMS; THERMAL COMFORT; HEAT; OPTIMIZATION; PROGNOSTICS; INTERNET; QUALITY;
D O I
10.3390/en16124721
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The air conditioning (AC) system is the primary building end-use contributor to the peak demand for energy. The energy consumed by this system has grown as fast as it has in the last few decades, not only in the residential section but also in the industry and transport sectors. Therefore, to combat energy crises, urgent actions on energy efficiency should be taken to support energy security. Consequently, the faults in AC system components increase energy consumption due to the degradation of the system's performance and the losses in the energy conversion procedure. In this work, AC system fault detection and diagnosis (FDD) methods are investigated to propose analytic tools to identify faults and provide solutions to those problems. The analysis of existing work shows that data-driven approaches are more accurate for both soft and hard fault detection and diagnosis in AC systems. Therefore, the proposed methods are not accurate for simultaneous fault detection, while in some works, authors tested the method with several faults separately without investigating scenarios that combine more than one fault. Moreover, this study shows that integrating data-driven approaches requires deploying an optimal sensing and measurement architecture that can detect a maximum number of faults with minimally deployed sensors. The new sensing, information, and communication technologies are discussed for their integration in AC system monitoring in order to optimize system operation and detect faults.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A review of fault detection and diagnosis methods for residential air conditioning systems
    Rogers, A. P.
    Guo, F.
    Rasmussen, B. P.
    BUILDING AND ENVIRONMENT, 2019, 161
  • [42] Subspace Aided Data-Driven Fault Detection for LTI Systems
    Chen Jiao
    Fang Huajing
    Liu Xiaoyong
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 2758 - 2761
  • [43] Knowledge-based attributes generation for data-driven fault diagnosis in process systems
    Yamashita, Yoshiyuki
    11TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, PTS A AND B, 2012, 31 : 310 - 314
  • [44] Data-driven fault diagnosis for PEMFC systems of hybrid tram based on deep learning
    Zhang, Xuexia
    Zhou, Jingzhe
    Chen, Weirong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (24) : 13483 - 13495
  • [45] A bi-level data-driven framework for fault-detection and diagnosis of HVAC systems
    Movahed, Paria
    Taheri, Saman
    Razban, Ali
    APPLIED ENERGY, 2023, 339
  • [46] Diagnosis for PEMFC Systems: A Data-Driven Approach With the Capabilities of Online Adaptation and Novel Fault Detection
    Li, Zhongliang
    Outbib, Rachid
    Giurgea, Stefan
    Hissel, Daniel
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (08) : 5164 - 5174
  • [47] Data-driven prognostic method based on self-supervised learning approaches for fault detection
    Tian Wang
    Meina Qiao
    Mengyi Zhang
    Yi Yang
    Hichem Snoussi
    Journal of Intelligent Manufacturing, 2020, 31 : 1611 - 1619
  • [48] Data-driven prognostic method based on self-supervised learning approaches for fault detection
    Wang, Tian
    Qiao, Meina
    Zhang, Mengyi
    Yang, Yi
    Snoussi, Hichem
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (07) : 1611 - 1619
  • [49] Fault Diagnosis Based on Data-driven of Ship Course Control
    Peng, Xiuyan
    Sun, Chunzhi
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 4784 - 4789
  • [50] Fault Detection and Diagnosis for Wind Turbines using Data-Driven Approach
    Francisco Manrique, Ruben
    Andres Giraldo, Fabian
    Sofrony Esmeral, Jorge
    2012 7TH COLOMBIAN COMPUTING CONGRESS (CCC), 2012,