Learning dynamic relationship between joints for 3D hand pose estimation from single depth map

被引:1
|
作者
Xing, Huiqin [1 ]
Yang, Jianyu [1 ]
Xiao, Yang [2 ]
机构
[1] Soochow Univ, Sch Rail Transportat, 8 Jixue Rd, Suzhou 215131, Jiangsu, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430000, Hubei, Peoples R China
关键词
Hand pose estimation; Dynamic anchor; Hand gesture; Depth map;
D O I
10.1016/j.jvcir.2023.103803
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
3D hand pose estimation from a single depth map is an essential topic in computer vision. Most existing methods are devoted to designing a model to capture more spatial information or designing loss functions based on prior knowledge to constrain the estimated pose with prior spatial information. In this work, we focus on constraining the estimation process with spatial information adaptively by learning the mutual position relationship between joint pairs. Specifically, we propose a dynamic relationship network (DRN) with dynamic anchors. The preset fixed anchors are employed to estimate the position of each joint initially. Then, each joint is considered a dynamic anchor, which plays the role of a dynamic regressor to adjust the initially estimated position of each joint. The final estimation of each joint is the weighted sum of the results from all the dynamic anchors. Extensive experiments on benchmarks demonstrate that our method provides competitive results compared with state-of-the-arts.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Single-Frame Indexing for 3D Hand Pose Estimation
    Carley, Cassandra
    Tomasi, Carlo
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 493 - 501
  • [32] Efficient Annotation and Learning for 3D Hand Pose Estimation: A Survey
    Ohkawa, Takehiko
    Furuta, Ryosuke
    Sato, Yoichi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (12) : 3193 - 3206
  • [33] Efficient Annotation and Learning for 3D Hand Pose Estimation: A Survey
    Takehiko Ohkawa
    Ryosuke Furuta
    Yoichi Sato
    International Journal of Computer Vision, 2023, 131 : 3193 - 3206
  • [34] Structure-Aware 3D Hand Pose Regression from a Single Depth Image
    Malik, Jameel
    Elhayek, Ahmed
    Stricker, Didier
    VIRTUAL REALITY AND AUGMENTED REALITY, EUROVR 2018, 2018, 11162 : 3 - 17
  • [35] An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest
    Kim, Wonggi
    Chun, Junchul
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2015, 9 (08): : 3136 - 3150
  • [36] Efficient Hand Pose Estimation from a Single Depth Image
    Xu, Chi
    Cheng, Li
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 3456 - 3462
  • [37] Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals
    Yuan, Shanxin
    Garcia-Hernando, Guillermo
    Stenger, Bjorn
    Moon, Gyeongsik
    Chang, Ju Yong
    Lee, Kyoung Mu
    Molchanov, Pavlo
    Kautz, Jan
    Honari, Sina
    Ge, Liuhao
    Yuan, Junsong
    Chen, Xinghao
    Wang, Guijin
    Yang, Fan
    Akiyama, Kai
    Wu, Yang
    Wan, Qingfu
    Madadi, Meysam
    Escalera, Sergio
    Li, Shile
    Lee, Dongheui
    Oikonomidis, Iason
    Argyros, Antonis
    Kim, Tae-Kyun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2636 - 2645
  • [38] Pose-Guided Hierarchical Graph Reasoning for 3-D Hand Pose Estimation From a Single Depth Image
    Ren, Pengfei
    Sun, Haifeng
    Hao, Jiachang
    Qi, Qi
    Wang, Jingyu
    Liao, Jianxin
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 315 - 328
  • [39] V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map
    Moon, Gyeongsik
    Chang, Ju Yong
    Lee, Kyoung Mu
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5079 - 5088
  • [40] Robust 3D Hand Pose Estimation in Single Depth Images: from Single-View CNN to Multi-View CNNs
    Ge, Liuhao
    Liang, Hui
    Yuan, Junsong
    Thalmann, Daniel
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3593 - 3601