Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders

被引:4
|
作者
del Moral, Maria [1 ,2 ,3 ]
Loeck, Maximilian [1 ,2 ,3 ]
Muntimadugu, Eameema [4 ]
Vives, Guillem [1 ,5 ]
Pham, Vy [4 ,6 ]
Pfeifer, Peter [1 ]
Battaglia, Giuseppe [1 ,7 ]
Muro, Silvia [1 ,4 ,6 ,7 ]
Andrianov, Alexander K.
机构
[1] Barcelona Inst Sci & Technol, Inst Bioengn Catalonia IBEC, Barcelona 08028, Spain
[2] Univ Barcelona, Appl Mt Chem Master Program M d M, Barcelona 08007, Spain
[3] Univ Barcelona, Biomed Doctorate Program, Barcelona 08007, Spain
[4] Univ Maryland, Inst Biosci & Biotechnol Res IBBR, College Pk, MD 20742 USA
[5] Autonomous Univ Barcelona, Nanosci & Nanotechnol Degree Program, Bellaterra 08193, Spain
[6] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[7] Inst Catalonia Res & Adv Studies ICREA, Barcelona 08010, Spain
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
lysosomal storage disorder; enzyme replacement therapy; hyaluronidase; poly(lactide-co-glycolide) nanoparticles; copolymer ratio; nanoparticle stability; enzyme release; CENTRAL-NERVOUS-SYSTEM; DRUG-DELIVERY; DEGRADATION; MECHANISMS; TRANSPORT; SIZE; SPHINGOMYELINASE; BIODEGRADATION; EMULSIFICATION; MICROSPHERES;
D O I
10.3390/jfb14090440
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (<= 168 nm) and polydispersity indexes (<= 0.16) and zeta-potentials (<=-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] The impact of the immune system on the safety and efficiency of enzyme replacement therapy in lysosomal storage disorders
    Broomfield, A.
    Jones, S. A.
    Hughes, S. M.
    Bigger, B. W.
    JOURNAL OF INHERITED METABOLIC DISEASE, 2016, 39 (04) : 499 - 512
  • [22] Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders
    Giannotti, Marina I.
    Abasolo, Ibane
    Oliva, Mireia
    Andrade, Fernanda
    Garcia-Aranda, Natalia
    Melgarejo, Marta
    Pulido, Daniel
    Corchero, Jose L.
    Fernandez, Yolanda
    Villaverde, Antonio
    Royo, Miriam
    Garcia-Parajo, Maria F.
    Sanz, Fausto
    Schwartz, Simo, Jr.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (39) : 25741 - 25752
  • [23] Current Enzyme Replacement Therapy for the Treatment of Lysosomal Storage Diseases
    Lim-Melia, Elizabeth R.
    Kronn, David F.
    PEDIATRIC ANNALS, 2009, 38 (08): : 448 - 455
  • [24] Immunological aspects of enzyme replacement therapy for lysosomal storage diseases
    Ohashi, T.
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACOLOGY AND THERAPEUTICS, 2010, 48 : S71 - S71
  • [25] New Strategies for Enzyme Replacement Therapy for Lysosomal Storage Diseases
    Grubb, Jeffrey H.
    Vogler, Carole
    Sly, William S.
    REJUVENATION RESEARCH, 2010, 13 (2-3) : 229 - 236
  • [26] Non-inhibitory antibodies impede lysosomal storage reduction in enzyme replacement therapy of a lysosomal storage disease
    Matzner, U.
    Matthes, F.
    Herbst, E.
    Luellmann-Rauch, R.
    Weigelt, C.
    Andersson, C.
    Eistrup, C.
    Fogh, J.
    Gieselmann, V
    JOURNAL OF INHERITED METABOLIC DISEASE, 2007, 30 : 124 - 124
  • [27] IMPACT OF LYSOSOMAL STORAGE DISORDERS ON DAILY LIVING OF PATIENTS AND THEIR FAMILIES AND PERCEPTIONS ON ENZYME REPLACEMENT THERAPY
    Rodrigues, F.
    Martins, F.
    Freitas, F.
    Diogo, L.
    Garcia, P.
    JOURNAL OF INHERITED METABOLIC DISEASE, 2011, 34 : S215 - S215
  • [28] New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy
    Michael Beck
    Human Genetics, 2007, 121 : 1 - 22
  • [29] New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy
    Beck, Michael
    HUMAN GENETICS, 2007, 121 (01) : 1 - 22
  • [30] Risks of long-term port use in enzyme replacement therapy for lysosomal storage disorders
    Hendriksz, Christian J.
    Harmatz, Paul
    Giugliani, Roberto
    Roberts, Jane
    Arul, G. Suren
    MOLECULAR GENETICS AND METABOLISM REPORTS, 2018, 15 : 71 - 73