Wildfires are recurrent natural hazards that affect terrestrial ecosystems, the carbon cycle, climate and society. They are typically hard to predict, as their exact location and occurrence are driven by a variety of factors. Identifying a selection of dominant controls can ultimately improve predictions and projections of wildfires in both the current and a future climate. Data-driven models are suitable for identification of dominant factors of complex and partly unknown processes and can both help improve process-based models and work as independent models. In this study, we applied a data-driven machine learning approach to identify dominant hydrometeorological factors determining fire occurrence over Fennoscandia and produced spatiotemporally resolved fire danger probability maps. A random forest learner was applied to predict fire danger probabilities over space and time, using a monthly (2001-2019) satellite-based fire occurrence dataset at a 0.25 degrees spatial grid as the target variable. The final data-driven model slightly outperformed the established Canadian Forest Fire Weather Index (FWI) used for comparison. Half of the 30 potential predictors included in the study were automatically selected for the model. Shallow volumetric soil water anomaly stood out as the dominant predictor, followed by predictors related to temperature and deep volumetric soil water. Using a local fire occurrence record for Norway as target data in a separate analysis, the test set performance increased considerably. This demonstrates the potential of developing reliable data-driven models for regions with a high-quality fire occurrence record and the limitation of using satellite-based fire occurrence data in regions subject to small fires not identified by satellites. We conclude that data-driven fire danger probability models are promising, both as a tool to identify the dominant predictors and for fire danger probability mapping. The derived relationships between wildfires and the selected predictors can further be used to assess potential changes in fire danger probability under different (future) climate scenarios.
机构:
Rhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Ecole Cent Nantes, UMR 6183 CNRS ECN UN, Inst Civil & Mech Engn, 1 Rue Noe, F-44321 Nantes, FranceRhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
Eggersmann, R.
Kirchdoerfer, T.
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Ecole Cent Nantes, UMR 6183 CNRS ECN UN, Inst Civil & Mech Engn, 1 Rue Noe, F-44321 Nantes, FranceRhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
Kirchdoerfer, T.
Reese, S.
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Ecole Cent Nantes, UMR 6183 CNRS ECN UN, Inst Civil & Mech Engn, 1 Rue Noe, F-44321 Nantes, FranceRhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
Reese, S.
Stainier, L.
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Ecole Cent Nantes, UMR 6183 CNRS ECN UN, Inst Civil & Mech Engn, 1 Rue Noe, F-44321 Nantes, FranceRhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
Stainier, L.
Ortiz, M.
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Ecole Cent Nantes, UMR 6183 CNRS ECN UN, Inst Civil & Mech Engn, 1 Rue Noe, F-44321 Nantes, FranceRhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
机构:
Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R ChinaQingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
Chi, Ronghu
Zhang, Huimin
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R ChinaQingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
Zhang, Huimin
Li, Huaying
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R ChinaQingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
Li, Huaying
Huang, Biao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, CanadaQingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
Huang, Biao
Hou, Zhongsheng
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R ChinaQingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
机构:
Chinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R ChinaChinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China
Feng, Xueshang
Jiang, Chaowei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R ChinaChinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China
Jiang, Chaowei
Xiang, Changqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R ChinaChinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China
Xiang, Changqing
Zhao, Xuepu
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USAChinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China
Zhao, Xuepu
Wu, S. T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USAChinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China