Machine Learning Methods to Address Confounding in Sepsis Mortality Rate

被引:0
|
作者
Basu, T. [1 ]
Teng, D. [1 ]
Bhomia, N. [1 ]
O'Malley, M. [1 ]
McLaughlin, E. [1 ]
Munroe, E. [1 ]
Bozyk, P. D. [2 ]
Blamoun, J. [3 ]
Kocher, K. [4 ]
Horowitz, J. [1 ]
Posa, P. [1 ]
Flanders, S. [1 ]
Prescott, H. C. [5 ]
机构
[1] Univ Michigan, Dept Med, Ann Arbor, MI USA
[2] William Beaumont Hosp, Pulm & Crit Care Med, Royal Oak, MI USA
[3] MyMichigan Hlth, Pulmonol & Crit Care Med, Midland, MI USA
[4] Univ Michigan, Dept Emergency Med, Ann Arbor, MI USA
[5] Univ Michigan, Div Pulm & Crit Care Med, Ann Arbor, MI USA
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A5934
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Machine learning algorithms in sepsis
    Agnello, Luisa
    Vidali, Matteo
    Padoan, Andrea
    Lucis, Riccardo
    Mancini, Alessio
    Guerranti, Roberto
    Plebani, Mario
    Ciaccio, Marcello
    Carobene, Anna
    CLINICA CHIMICA ACTA, 2024, 553
  • [32] A Machine Learning Understanding of Sepsis
    Shetty, Manish
    Alex, Soumya Mary
    Moni, Merlin
    Edathadathil, Fabia
    Prasanna, Preetha
    Menon, Veena
    Menon, Vidya P.
    Athri, Prashanth
    Srinivasa, Gowri
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2175 - 2179
  • [33] Survival prediction for heart failure complicated by sepsis: based on machine learning methods
    Zhang, Qitian
    Xu, Lizhen
    He, Weibin
    Lai, Xinqi
    Huang, Xiaohong
    FRONTIERS IN MEDICINE, 2024, 11
  • [34] Identification of Risk Factors and Prediction of Sepsis in Pregnancy Using Machine Learning Methods
    Kopanitsa, Georgy
    Metsker, Oleg
    Paskoshev, David
    Greschischeva, Sofia
    10TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE IN COMPUTATIONAL SCIENCE (YSC2021), 2021, 193 : 393 - 401
  • [35] Using Machine Learning Methods to Predict the Lactate Trend of Sepsis Patients in the ICU
    Arslantas, Mustafa Kemal
    Asuroglu, Tunc
    Arslantas, Reyhan
    Pashazade, Emin
    Dincer, Pelin Corman
    Altun, Gulbin Tore
    Kararmaz, Alper
    DIGITAL HEALTH AND WIRELESS SOLUTIONS, PT II, NCDHWS 2024, 2024, 2084 : 3 - 16
  • [36] Application of machine learning methods to forecast the rate of horizontal wells
    Soromotin, A., V
    Martyushev, D. A.
    Stepanenko, I. B.
    SOCAR PROCEEDINGS, 2023, : 70 - 77
  • [37] Fundamentals and exchange rate forecastability with simple machine learning methods
    Amat, Christophe
    Michalski, Tomasz
    Stoltz, Gilles
    JOURNAL OF INTERNATIONAL MONEY AND FINANCE, 2018, 88 : 1 - 24
  • [38] Advancements in Predictive Analytics: Machine Learning Approaches to Estimating Length of Stay and Mortality in Sepsis
    Ben Khalfallah, Houssem
    Jelassi, Mariem
    Demongeot, Jacques
    Ben Saoud, Narjes Bellamine
    COMPUTATION, 2025, 13 (01)
  • [39] Predicting Sepsis Mortality in a Population-Based National Database: Machine Learning Approach
    Park, James Yeongjun
    Hsu, Tzu-Chun
    Hu, Jiun-Ruey
    Chen, Chun-Yuan
    Hsu, Wan-Ting
    Lee, Matthew
    Ho, Joshua
    Lee, Chien-Chang
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (04)
  • [40] Predicting mortality and risk factors of sepsis related ARDS using machine learning models
    Zhiwei Xu
    Kai Zhang
    Danqin Liu
    Xiangming Fang
    Scientific Reports, 15 (1)