IPCONV: Convolution with Multiple Different Kernels for Point Cloud Semantic Segmentation

被引:3
|
作者
Zhang, Ruixiang [1 ]
Chen, Siyang [1 ]
Wang, Xuying [1 ]
Zhang, Yunsheng [1 ,2 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410075, Peoples R China
[2] Natl Engn Res Ctr High Speed Railway Construct Tec, Changsha 410075, Peoples R China
基金
中国国家自然科学基金;
关键词
point cloud semantic segmentation; deep neural network; convolution; multi-shape neighborhood; CLASSIFICATION; NETWORK;
D O I
10.3390/rs15215136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The segmentation of airborne laser scanning (ALS) point clouds remains a challenge in remote sensing and photogrammetry. Deep learning methods, such as KPCONV, have proven effective on various datasets. However, the rigid convolutional kernel strategy of KPCONV limits its potential use for 3D object segmentation due to its uniform approach. To address this issue, we propose an Integrated Point Convolution (IPCONV) based on KPCONV, which utilizes two different convolution kernel point generation strategies, one cylindrical and one a spherical cone, for more efficient learning of point cloud data features. We propose a customizable Multi-Shape Neighborhood System (MSNS) to balance the relationship between these convolution kernel point generations. Experiments on the ISPRS benchmark dataset, LASDU dataset, and DFC2019 dataset demonstrate the validity of our method.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Graph Attention Convolution for Point Cloud Semantic Segmentation
    Wang, Lei
    Huang, Yuchun
    Hou, Yaolin
    Zhang, Shenman
    Shan, Jie
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10288 - 10297
  • [2] Point cloud semantic scene segmentation based on coordinate convolution
    Zhang, Zhaoxuan
    Li, Kun
    Yin, Xuefeng
    Piao, Xinglin
    Wang, Yuxin
    Yang, Xin
    Yin, Baocai
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2020, 31 (4-5)
  • [3] Semantic Segmentation of Point Cloud With Novel Neural Radiation Field Convolution
    Li, Wei
    Zhan, Lixin
    Min, Weidong
    Zou, Yi
    Huang, Zheng
    Wen, Chenglu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [4] DGPoint: A Dynamic Graph Convolution Network for Point Cloud Semantic Segmentation
    Liu Youqun
    Ao Jianfeng
    Pan Zhongtai
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [5] Deep Graph Attention Convolution Network for Point Cloud Semantic Segmentation
    Chai Yujing
    Ma Jie
    Liu Hong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (12)
  • [6] Multi-scale sparse convolution and point convolution adaptive fusion point cloud semantic segmentation method
    Bi, Yuxuan
    Liu, Peng
    Zhang, Tianyi
    Shi, Jialin
    Wang, Caixia
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Semantic Segmentation Method of Point Cloud Based on Sparse Convolution and Attention Mechanism
    Zuo Meng
    Liu Yiyang
    Cui Hao
    Bai Hongfei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (20)
  • [8] SPNet: Multi-shell Kernel Convolution for Point Cloud Semantic Segmentation
    Li, Yuyan
    Fan, Chuanmao
    Wang, Xu
    Duan, Ye
    ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT I, 2021, 13017 : 366 - 378
  • [9] Point cloud semantic segmentation network based on graph convolution and attention mechanism
    Yang, Nan
    Wang, Yong
    Zhang, Lei
    Jiang, Bin
    Engineering Applications of Artificial Intelligence, 2025, 141
  • [10] PointMS: Semantic Segmentation for Point Cloud Based on Multi-scale Directional Convolution
    Chen, Hui
    Chen, Wanlou
    Zuo, Yipeng
    Xu, Peng
    Hao, Zhonghua
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (10) : 3321 - 3334