ZIP transporters-regulated Zn2+ homeostasis: A novel determinant of human diseases

被引:2
|
作者
Liu, Huimei [1 ]
Li, Lanfang [1 ,2 ,3 ]
Lu, Ruirui [2 ,3 ]
机构
[1] Univ South China, Hengyang Med Sch, Dept Pharmacol, Hengyang, Peoples R China
[2] Univ South China, Hunan Prov Cooperat Innovat Ctr Mol Target New Dru, Sch Pharmaceut Sci, Hengyang Med Sch, Hengyang, Peoples R China
[3] Univ South China, Hunan Prov Cooperat Innovat Ctr Mol Target New Dru, Sch Pharmaceut Sci, Hengyang Med Sch, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
cancers; cardiovascular diseases; neurological diseases; zinc; ZIP transporters; EPITHELIAL-MESENCHYMAL TRANSITION; ZIP14-MEDIATED ZINC TRANSPORT; COLORECTAL-CANCER; GROWTH; EXPRESSION; KNOCKDOWN; FIBROSIS; TUMORIGENESIS; LOCALIZATION; CONTRIBUTES;
D O I
10.1002/jcp.31223
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
As an essential trace element for organisms, zinc participates in various physiological processes, such as RNA transcription, DNA replication, cell proliferation, and cell differentiation. The destruction of zinc homeostasis is associated with various diseases. Zinc homeostasis is controlled by the cooperative action of zinc transporter proteins that are responsible for the influx and efflux of zinc. Zinc transporter proteins are mainly categorized into two families: Zrt/Irt-like protein (SLC39A/ZIP) family and zinc transporter (SLC30A/ZNT) family. ZIP transporters contain 14 members, namely ZIP1-14, which can be further divided into four subfamilies. Currently, ZIP transporters-regulated zinc homeostasis is one of the research hotspots. Cumulative evidence suggests that ZIP transporters-regulated zinc homeostasis may cause physiological dysfunction and contribute to the onset and progression of diverse diseases, such as cancers, neurological diseases, and cardiovascular diseases. In this review, we initially discuss the structure and distribution of ZIP transporters. Furthermore, we comprehensively review the latest research progress of ZIP transporters-regulated zinc homeostasis in diseases, providing a new perspective into new therapeutic targets for treating related diseases.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Triphenyltin disrupts intracellular Zn2+ homeostasis in rat thymic lymphocytes
    Ueno, Toshiya
    Oyama, Keisuke
    Hyung, Youn Jae
    Ueno, Shinya
    Oyama, Yasuo
    TOXICOLOGY IN VITRO, 2020, 65
  • [22] Insights into Zn2+ homeostasis in neurons from experimental and modeling studies
    Colvin, Robert A.
    Bush, Ashley I.
    Volitakis, Irene
    Fontaine, Charles P.
    Thomas, Dustin
    Kikuchi, Kazuya
    Holmes, William R.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2008, 294 (03): : C726 - C742
  • [23] Entropy-regulated electrolytes for improving Zn2+ dynamics and Zn anodes reversibility
    Hong, Jiahong
    Qiu, Meijia
    Liang, Yuxuan
    Liu, Yongtao
    Chen, Jinguo
    Sun, Peng
    Mai, Wenjie
    APPLIED PHYSICS LETTERS, 2024, 124 (26)
  • [24] Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis
    Jan L Vinkenborg
    Tamara J Nicolson
    Elisa A Bellomo
    Melissa S Koay
    Guy A Rutter
    Maarten Merkx
    Nature Methods, 2009, 6 : 737 - 740
  • [25] Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis
    Vinkenborg, Jan L.
    Nicolson, Tamara J.
    Bellomo, Elisa A.
    Koay, Melissa S.
    Rutter, Guy A.
    Merkx, Maarten
    NATURE METHODS, 2009, 6 (10) : 737 - U10
  • [26] Cloning, function, and localization of human, canine, and Drosophila ZIP10 (SLC39A10), a Zn2+ transporter
    Landry, Greg M.
    Furrow, Eva
    Holmes, Heather L.
    Hirata, Taku
    Kato, Akira
    Williams, Paige
    Strohmaier, Kari
    Gallo, Chris J. R.
    Chang, Minhwang
    Pandey, Mukesh K.
    Jiang, Huailei
    Bonsal, Aditya
    Franz, Marie-Christine
    Montalbetti, Nicolas
    Alexander, Mariam P.
    Cabrero, Pablo
    Dow, Julian A. T.
    DeGrado, Timothy R.
    Romero, Michael F.
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2019, 316 (02) : F263 - F273
  • [27] Calcium entry is regulated by Zn2+ in relation to extracellular ionic environment in human airway epithelial cells
    Hargitai, Dora
    Pataki, Agnes
    Raffai, Gabor
    Fuezi, Marta
    Danko, Tamas
    Csernoch, Laszlo
    Varnai, Peter
    Szigeti, Gyula Peter
    Zsembery, Akos
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2010, 170 (01) : 67 - 75
  • [28] Role of ZIP7 in Regulation of Cytosolic Free Zn2+ Level in Mammalian Cardiomyocytes
    Tuncay, Erkan
    Bitirim, Verda C.
    Toy, Aysegul
    Keskin, Zeynep Tokcaer
    Akcali, Kamil C.
    Rutter, Guy A.
    Turan, Belma
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 588A - 588A
  • [29] Micromolar Zn2+ potentiates the cytotoxic action of submicromolar econazole in rat thymocytes: Possible disturbance of intracellular Ca2+ and Zn2+ homeostasis
    Kinazaki, Akio
    Sakanashi, Yoko
    Oyama, Tomohiro M.
    Shibagaki, Haruka
    Yamashita, Kohei
    Hashimoto, Erika
    Nishimura, Yumiko
    Ishida, Shiro
    Okano, Yoshiro
    Oyama, Yasuo
    TOXICOLOGY IN VITRO, 2009, 23 (04) : 610 - 616
  • [30] The role of extracellular Zn2+ in Ca2+ homeostasis of airway epithelial cells
    Hargitai, D.
    Pataki, A.
    Danko, T.
    Gy, Szigeti
    Zsembery, A.
    ACTA PHYSIOLOGICA HUNGARICA, 2009, 96 (01) : 80 - 81