Reinvent 4: Modern AI-driven generative molecule design

被引:36
|
作者
Loeffler, Hannes H. [1 ]
He, Jiazhen [1 ]
Tibo, Alessandro [1 ]
Janet, Jon Paul [1 ]
Voronov, Alexey [1 ]
Mervin, Lewis H. [2 ]
Engkvist, Ola [1 ]
机构
[1] AstraZeneca, Mol AI, Discovery Sci, R&D, Gothenburg, Sweden
[2] AstraZeneca, Mol AI, Discovery Sci, R&D, Cambridge, England
关键词
Generative AI; Reinforcement learning; Transfer learning; Multi parameter optimization; Recurrent neural networks; Transformers; DOCKING; OPTIMIZATION; ALGORITHM;
D O I
10.1186/s13321-024-00812-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
REINVENT 4 is a modern open-source generative AI framework for the design of small molecules. The software utilizes recurrent neural networks and transformer architectures to drive molecule generation. These generators are seamlessly embedded within the general machine learning optimization algorithms, transfer learning, reinforcement learning and curriculum learning. REINVENT 4 enables and facilitates de novo design, R-group replacement, library design, linker design, scaffold hopping and molecule optimization. This contribution gives an overview of the software and describes its design. Algorithms and their applications are discussed in detail. REINVENT 4 is a command line tool which reads a user configuration in either TOML or JSON format. The aim of this release is to provide reference implementations for some of the most common algorithms in AI based molecule generation. An additional goal with the release is to create a framework for education and future innovation in AI based molecular design. The software is available from https://github.com/MolecularAI/REINVENT4 and released under the permissive Apache 2.0 license. Scientific contribution. The software provides an open-source reference implementation for generative molecular design where the software is also being used in production to support in-house drug discovery projects. The publication of the most common machine learning algorithms in one code and full documentation thereof will increase transparency of AI and foster innovation, collaboration and education.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Efficient AI-Driven Design of Microwave Antennas Using PSADEA
    Akinsolu, Mobayode O.
    Danjuma, Isah M.
    Mistry, Keyur K.
    Liu, Bo
    Abd-Alhameed, Raed A.
    Lazaridis, Pavlos, I
    Zaharis, Zaharias D.
    Excell, Peter
    2019 2ND IEEE MIDDLE EAST AND NORTH AFRICA COMMUNICATIONS CONFERENCE (IEEEMENACOMM'19), 2019, : 299 - 303
  • [32] AI-Driven Inverse Design of Materials: Past, Present, and Future
    Han, Xiao-Qi
    Wang, Xin-De
    Xu, Meng-Yuan
    Feng, Zhen
    Yao, Bo-Wen
    Guo, Peng-Jie
    Gao, Ze-Feng
    Lu, Zhong-Yi
    CHINESE PHYSICS LETTERS, 2025, 42 (02)
  • [33] AI-driven mock interview assessment: leveraging generative language models for automated evaluation
    Uppalapati, Padma Jyothi
    Dabbiru, Madhavi
    Kasukurthi, Venkata Rao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025,
  • [34] Empowering the AI-Driven Laboratory
    Meek, Trish
    Gioioso, Marisa
    LCGC NORTH AMERICA, 2023, 41 (11) : 470 - 471
  • [35] Alienation in the AI-Driven Workplace
    Vredenburgh, Kate
    AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2021, : 266 - 266
  • [36] AI-DRIVEN MANAGEMENT OF SUBMASSIVE PE ADVANCES BEYOND INITIAL APPROACH FOR AI-DRIVEN DIAGNOSIS
    Abide, Aimee
    CRITICAL CARE MEDICINE, 2025, 53 (01)
  • [37] GRADES: AN AI-DRIVEN GRAPHIC DESIGN SUPPORT SYSTEM FOR DESIGN STYLE ANALYSIS
    Song, Jinyu
    You, Weitao
    Shi, Shuhui
    Tu, Ziwei
    Ji, Juntao
    Han, Kaixin
    Sun, Lingyun
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3A, 2023,
  • [38] Adversarial Attacks against AI-driven Experimental Peptide Design Workflows
    Ramanathan, Arvind
    Jha, Sumit Kumar
    PROCEEDINGS OF XLOOP 2021: THE 3RD ANNUAL WORKSHOP ON EXTREME-SCALE EXPERIMENT-IN-THE-LOOP COMPUTING, 2021, : 30 - 35
  • [39] Strategies of Interconnecting Deep Learning Models in AI-Driven Design Systems
    Yousif, Shermeen
    Bolojan, Daniel
    CREATIVITY IN THE AGE OF DIGITAL REPRODUCTION, XARCH 2023, 2024, 343 : 244 - 252
  • [40] Lumos: AI-driven prompt optimisation tool for assisting conceptual design
    Chen, Xiaoyu
    Ma, Zirui
    Jiang, Xinhao
    Jian, Yingzhao
    Yao, Xuelin
    Wu, Peiping
    JOURNAL OF ENGINEERING DESIGN, 2024, 35 (12) : 1597 - 1623