Spectral Bayesian Uncertainty for Image Super-resolution

被引:10
|
作者
Liu, Tao [1 ]
Cheng, Jun [1 ]
Tan, Shan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.01742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently deep learning techniques have significantly advanced image super-resolution (SR). Due to the black-box nature, quantifying reconstruction uncertainty is crucial when employing these deep SR networks. Previous approaches for SR uncertainty estimation mostly focus on capturing pixel-wise uncertainty in the spatial domain. SR uncertainty in the frequency domain which is highly related to image SR is seldom explored. In this paper, we propose to quantify spectral Bayesian uncertainty in image SR. To achieve this, a Dual-Domain Learning (DDL) framework is first proposed. Combined with Bayesian approaches, the DDL model is able to estimate spectral uncertainty accurately, enabling a reliability assessment for high frequencies reasoning from the frequency domain perspective. Extensive experiments under non-ideal premises are conducted and demonstrate the effectiveness of the proposed spectral uncertainty. Furthermore, we propose a novel Spectral Uncertainty based Decoupled Frequency (SUDF) training scheme for perceptual SR. Experimental results show the proposed SUDF can evidently boost perceptual quality of SR results without sacrificing much pixel accuracy.
引用
收藏
页码:18166 / 18175
页数:10
相关论文
共 50 条
  • [41] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA ADJACENT SPECTRAL FUSION STRATEGY
    Li, Qiang
    Wang, Qi
    Li, Xuelong
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1645 - 1649
  • [42] Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution
    Akhtar, Naveed
    Shafait, Faisal
    Mian, Ajmal
    COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 : 63 - 78
  • [43] Hyperspectral Image Super-Resolution Based on Spatial and Spectral Correlation Fusion
    Yi, Chen
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (07): : 4165 - 4177
  • [44] Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation
    Hu, Jing
    Zhao, Minghua
    Li, Yunsong
    REMOTE SENSING, 2019, 11 (10)
  • [45] A novel spatial and spectral transformer network for hyperspectral image super-resolution
    Wu, Huapeng
    Xu, Hui
    Zhan, Tianming
    MULTIMEDIA SYSTEMS, 2024, 30 (03)
  • [46] Spectral-Spatial MLP Network for Hyperspectral Image Super-Resolution
    Yao, Yunze
    Hu, Jianwen
    Liu, Yaoting
    Zhao, Yushan
    REMOTE SENSING, 2023, 15 (12)
  • [47] Multifiltering MLP for Spectral Super-Resolution With Remote Sensing Image Verification
    Li, Gong
    Leng, Yihong
    Zhang, Zhiyuan
    Wan, Gang
    Li, Jiaojiao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16646 - 16658
  • [48] Compressive spectral image super-resolution by using singular value decomposition
    Marquez, M.
    Mejia, Y.
    Arguello, Henry
    OPTICS COMMUNICATIONS, 2017, 404 : 163 - 168
  • [49] Spectral-Cascaded Diffusion Model for Remote Sensing Image Spectral Super-Resolution
    Chen, Bowen
    Liu, Liqin
    Liu, Chenyang
    Zou, Zhengxia
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [50] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,