Rogue waves and instability arising from long-wave-short-wave resonance beyond the integrable regime

被引:7
|
作者
Sun, Wen-Rong [1 ]
Malomed, Boris A. [2 ]
Li, Jin-Hua [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
基金
以色列科学基金会;
关键词
MODULATIONAL INSTABILITY; SOLITONS; TRAINS; WATER;
D O I
10.1103/PhysRevE.109.024209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider instability and localized patterns arising from the long-wave-short-wave resonance in the nonintegrable regime numerically. We study the stability and instability of elliptic-function periodic waves with respect to subharmonic perturbations, whose period is a multiple of the period of the elliptic waves. We thus find the modulational instability (MI) of the corresponding dnoidal waves. Upon varying parameters of dnoidal waves, spectrally unstable ones can be transformed into stable states via the Hamiltonian Hopf bifurcation. For snoidal waves, we find a transition of the dominant instability scenario between the MI and the instability with a bubblelike spectrum. For cnoidal waves, we produce three variants of the MI. Evolution of the unstable states is also considered, leading to formation of rogue waves on top of the elliptic-wave and continuous-wave backgrounds.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Non-existence and existence of localized solitary waves for the two-dimensional long-wave-short-wave interaction equations
    Borluk, H.
    Erbay, H. A.
    Erbay, S.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 356 - 360
  • [42] Orbital stability of solitary waves of the long wave-short wave resonance equations
    Guo, BL
    Chen, L
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1998, 21 (10) : 883 - 894
  • [43] Rogue internal waves in the ocean: Long wave model
    Grimshaw, R.
    Pelinovsky, E.
    Taipova, T.
    Sergeeva, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01): : 195 - 208
  • [44] Rogue internal waves in the ocean: Long wave model
    R. Grimshaw
    E. Pelinovsky
    T. Taipova
    A. Sergeeva
    The European Physical Journal Special Topics, 2010, 185 : 195 - 208
  • [45] General soliton, line breather and (semi-)rational solutions for the nonlocal long-wave-short-wave resonance interaction equation
    Xin Wu
    Yong Chen
    Xue-Wei Yan
    Nonlinear Dynamics, 2024, 112 : 661 - 679
  • [46] Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system
    Rao, Jiguang
    Porsezian, Kuppuswamy
    He, Jingsong
    Kanna, Thambithurai
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2209):
  • [47] Multicomponent long-wave-short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons
    Sakkaravarthi, K.
    Kanna, T.
    Vijayajayanthi, M.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [48] Mixed solitons in a (2+1)-dimensional multicomponent long-wave-short-wave system
    Kanna, T.
    Vijayajayanthi, M.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [49] Periodic-background solutions for the Yajima-Oikawa long-wave-short-wave equation
    Li, Ruomeng
    Geng, Xianguo
    NONLINEAR DYNAMICS, 2022, 109 (02) : 1053 - 1067
  • [50] On the particular solutions of an integrable equation governing short waves in a long-wave model
    Kraenkel, R. A.
    Senthilvelan, M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 446 - 449