Explicit Symplectic Runge-Kutta-Nystrom Methods Based on Roots of Shifted Legendre Polynomial

被引:0
|
作者
Zhang, Jun [1 ]
Zhang, Jingjing [1 ]
Zhang, Shangyou [2 ]
机构
[1] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Peoples R China
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国国家自然科学基金;
关键词
explicit symplectic Runge-Kutta-Nystrom methods; the shifted Legendre polynomials; order conditions; five-stage fourth-order; seven-stage fifth-order;
D O I
10.3390/math11204291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To date, all explicit symplectic Runge-Kutta-Nystrom methods of order five or above are derived by numerical solutions of order condition equations and symplectic condition. In this paper, we derive 124 sets of seven-stage fifth-order explicit symplectic Runge-Kutta-Nystrom methods with closed-form coefficients in the Butcher tableau using the roots of a degree-3 shifted Legendre polynomial. One method is analyzed and its P-stable interval is derived. Numerical tests on the two newly discovered methods are performed, showing their long-time stability and large step size stability over some existing methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [22] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [23] INTERPOLANTS FOR RUNGE-KUTTA-NYSTROM METHODS
    FINE, JM
    COMPUTING, 1987, 39 (01) : 27 - 42
  • [24] A Trigonometrically Fitted Symplectic Runge-Kutta-Nystrom Method
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [25] A tenth order symplectic Runge-Kutta-Nystrom method
    Tsitouras, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 74 (04): : 223 - 230
  • [26] Explicit parallel two-step Runge-Kutta-Nystrom methods
    Cong, NH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (03) : 119 - 130
  • [27] Explicit parallel two-step Runge-Kutta-Nystrom methods
    CWI, Amsterdam, Netherlands
    Comput Math Appl, 3 (119-130):
  • [28] Symmetric and symplectic exponentially fitted Runge-Kutta-Nystrom methods for Hamiltonian problems
    You, Xiong
    Chen, Bingzhen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 94 : 76 - 95
  • [29] Functionally fitted Runge-Kutta-Nystrom methods
    Hoang, N. S.
    Sidje, R. B.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (01) : 129 - 150
  • [30] Functional continuous Runge-Kutta-Nystrom methods
    Eremin, Alexey S.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016,