Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like L-2(R+) or H-2(C+). These kernels entail an algebraic L-1-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the L-2(R+) case turn out to be Hardy kernels as well. In the H-2(C+) scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley-Wiener type, and a connection with one-sided Hilbert transforms.
机构:
PSL Res Univ, Ecole Normale Super, INRIA, Paris, France
PSL Res Univ, Ecole Normale Super, Dept Informat, Paris, FrancePSL Res Univ, Ecole Normale Super, INRIA, Paris, France
Aubin-Frankowski, Pierre-Cyril
Gaubert, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
IP Paris, INRIA, Ecole Polytech, CNRS, Paris, France
IP Paris, Ecole Polytech, CMAP, CNRS, Paris, FrancePSL Res Univ, Ecole Normale Super, INRIA, Paris, France
机构:
Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R ChinaYantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
Chen, Wenjian
Wang, Benxun
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaYantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
Wang, Benxun
Zhang, Haizhang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaYantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China