Synergetic gait prediction and compliant control of SEA-driven knee exoskeleton for gait rehabilitation

被引:1
|
作者
Liu, Haojie [1 ]
Zhu, Chang [1 ]
Zhou, Zude [1 ]
Dong, Yunfei [1 ]
Meng, Wei [1 ]
Liu, Quan [1 ]
机构
[1] Wuhan Univ Technol, Sch Informat Engn, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
knee exoskeleton; series elastic actuator; gait prediction; compliant control; personalized trajectory; TRAJECTORY GENERATION; IMPEDANCE CONTROL; WALKING; JOINT; ACCURATE; ACTUATOR; DESIGN; MODEL; EMG;
D O I
10.3389/fbioe.2024.1358022
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In recent years, lower limb exoskeletons have achieved satisfactory clinical curative effects in rehabilitating stroke patients. Furthermore, generating individualized trajectories for each patient and avoiding secondary injury in rehabilitation training are important issues. This paper explores the utilization of series elastic actuator (SEA) to deliver compliant force and enhance impact resistance in human-robot interaction, and we present the design of novel knee exoskeleton driven by SEA. Subsequently, the novel gait trajectory prediction method and compliant control method are proposed. The attention-based CNN-LSTM model is established to generate personalized gait trajectories for affected limbs, in which the spatial-temporal attention mechanism is adopted to improve the prediction accuracy. The compliant control strategy is proposed to nonlinearly and adaptively tune impedance parameters based on artificial potential field (APF) method, and active rehabilitation training is carried out in the coordination space to guarantee patient safety. The experimental results based on four healthy subjects demonstrated that synergetic gait prediction model could satisfactorily characterize the coordination movement with higher accuracy. The compliant control could limit the patient's movement in the safe coordination tunnel while considering personalization and flexibility.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Gait Deviation Correction Method for Gait Rehabilitation With a Lower Limb Exoskeleton Robot
    Zhang, Shisheng
    Guan, Xiao
    Ye, Jing
    Chen, Gong
    Zhang, Zhimian
    Leng, Yuquan
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2022, 4 (03): : 754 - 763
  • [22] Deep Rehabilitation Gait Learning for Modeling Knee Joints of Lower-limb Exoskeleton
    Liu, Du-Xin
    Du, Wenbin
    Wu, Xinyu
    Wang, Can
    Qiao, Yu
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 1058 - 1063
  • [23] Design of variable impedance actuator for knee joint of a portable human gait rehabilitation exoskeleton
    Torrealba, Rafael R.
    Udelman, Samuel B.
    Fonseca-Rojas, Edgar D.
    MECHANISM AND MACHINE THEORY, 2017, 116 : 248 - 261
  • [24] Design Advancements toward a Wearable Pediatric Robotic Knee Exoskeleton for Overground Gait Rehabilitation
    Chen, Ji
    Hochstein, Jon
    Kim, Christina
    Damiano, Diane
    Bulea, Thomas
    2018 7TH IEEE INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB2018), 2018, : 37 - 42
  • [25] Compliant Velocity based Force Coordinate Transformation Control for Gait Rehabilitation
    Sasayama, Misako
    Murakami, Toshiyuki
    2014 IEEE 13TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2014,
  • [26] Realization of Gait Rehabilitation Using Compliant Force Coordinate Transformation Control
    Sasayama, Misako
    Murakami, Toshiyuki
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 3982 - 3987
  • [27] The Control of a Lower Limb Exoskeleton for Gait Rehabilitation: A Hybrid Active Force Control Approach
    Majeed, A. P. P. A.
    Taha, Z.
    Abidin, A. F. Z.
    Zakaria, M. A.
    Khairuddin, I. M.
    Razman, M. A. M.
    Mohamed, Z.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS 2016), 2017, 105 : 183 - 190
  • [28] Design And Control For A Compliant Knee Exoskeleton
    Luo, Yuhao
    Wang, Can
    Wang, Zheng
    Ma, Yue
    Wang, Chao
    Wu, Xinyu
    2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), 2017, : 282 - 287
  • [29] Modeling and Simulation of a Lower Limb Exoskeleton with Computed Torque Control for Gait Rehabilitation
    Jaimes, W. J.
    Mantilla, J. F.
    Salinas, S. A.
    Navarro, H. J.
    2021 GLOBAL MEDICAL ENGINEERING PHYSICS EXCHANGES/PAN AMERICAN HEALTH CARE EXCHANGES (GMEPE/PAHCE), 2021,
  • [30] Lower limb exoskeleton for gait rehabilitation with adaptive nonsingular sliding mode control
    Centeno-Barreda, Daniel
    Salazar-Cruz, Sergio
    Lopez-Gutierrez, Ricardo
    Rosales-Luengas, Yukio
    Lozano, Rogelio
    ROBOTICA, 2024, 42 (11) : 3819 - 3838