Groups acting on CAT(0) cube complexes with uniform

被引:1
|
作者
Guptha, Radhika [1 ]
Jankiewicz, Kasia [2 ]
Ng, Thomas [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Mumbai, India
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA USA
[3] Technion Israel Inst Technol, Math Dept, Haifa, Israel
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2023年 / 23卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
EXPONENTIAL-GROWTH; ARTIN GROUPS; SUBGROUPS; SPACES;
D O I
10.2140/agt.2023.23.13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev that considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that nonvirtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth.
引用
收藏
页码:13 / +
页数:33
相关论文
共 50 条
  • [31] Proper actions of Grigorchuk groups on a CAT(0) cube complex
    Schneeberger, Gregoire
    GEOMETRIAE DEDICATA, 2024, 218 (06)
  • [32] The Furstenberg-Poisson boundary and CAT(0) cube complexes
    Fernos, Talia
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 2180 - 2223
  • [33] Isometries of CAT(0) cube complexes are semi-simple
    Haglund, Frederic
    ANNALES MATHEMATIQUES DU QUEBEC, 2023, 47 (02): : 249 - 261
  • [34] Folding-like techniques for CAT(0) cube complexes
    Ben-zvi, Michael
    Kropholler, Robert
    Lyman, Rylee Alanza
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (01) : 227 - 238
  • [35] Globally stable cylinders for hyperbolic CAT(0) cube complexes
    Lazarovich, Nir
    Sageev, Michah
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 203 - 211
  • [36] CAT(0) cube complexes are determined by their boundary cross ratio
    Beyrer, Jonas
    Fioravanti, Elia
    Incerti-Medici, Merlin
    GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (01) : 313 - 333
  • [37] Top-dimensional quasiflats in CAT(0) cube complexes
    Huang, Jingyin
    GEOMETRY & TOPOLOGY, 2017, 21 (04) : 2281 - 2352
  • [38] Isometries of CAT(0) cube complexes are semi-simple
    Frédéric Haglund
    Annales mathématiques du Québec, 2023, 47 : 249 - 261
  • [39] The median class and superrigidity of actions on CAT(0) cube complexes
    Chatterji, Indira
    Fernos, Talia
    Iozzi, Alessandra
    Caprace, Pierre-Emmanuel
    JOURNAL OF TOPOLOGY, 2016, 9 (02) : 349 - 400
  • [40] Median quasimorphisms on CAT(0)cube complexes and their cup products
    Brueck, Benjamin
    Fournier-Facio, Francesco
    Loeh, Clara
    GEOMETRIAE DEDICATA, 2024, 218 (01)