Groups acting on CAT(0) cube complexes with uniform

被引:1
|
作者
Guptha, Radhika [1 ]
Jankiewicz, Kasia [2 ]
Ng, Thomas [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Mumbai, India
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA USA
[3] Technion Israel Inst Technol, Math Dept, Haifa, Israel
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2023年 / 23卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
EXPONENTIAL-GROWTH; ARTIN GROUPS; SUBGROUPS; SPACES;
D O I
10.2140/agt.2023.23.13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev that considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that nonvirtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth.
引用
收藏
页码:13 / +
页数:33
相关论文
共 50 条