Long Time Asymptotic Behavior for the Nonlocal mKdV Equation in Solitonic Space-Time Regions

被引:2
|
作者
Zhou, Xuan [1 ]
Fan, Engui [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal mKdV equation; Riemann-Hilbert problem; & part; (& macr; )-steepest descent method; Long time asymptotics; FOKAS-LENELLS EQUATION; DE-VRIES EQUATION; INVERSE SCATTERING;
D O I
10.1007/s11040-023-09445-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long time asymptotic behavior for the Cauchy problem of an integrable real nonlocal mKdV equation with nonzero initial data in the solitonic regions q(t )(x , t) - 6 sigma q(x , t)q(-x, -t)q(x)(x , t) + q(xxx)(x , t) = 0, q(x , 0) = q(0)(x), (x ->+/-infinity)lim q(0 )(x) = q +/-,where |q +/-| = 1 and q(+) = delta q- , sigma delta = -1. In our previous article, we have obtained long time asymptotics for the nonlocal mKdV equation in the solitonic region -6 < xi < 6 with xi = (t)/(x) . In this paper, we give the asymptotic expansion of the solution q(x , t) for other solitonic regions xi < -6 and xi > 6. Based on the Riemann-Hilbert formulation of the Cauchy problem, further using the & part;(& macr;) steepest descent method, we derive different long time asymptotic expansions of the solution q(x , t) in above two different space-time solitonic regions. In the region xi < -6, phase function theta(z) has four stationary phase points on the R. Correspondingly, q(x , t) can be characterized with an N(lambda)-soliton on discrete spectrum, the leading order term on continuous spectrum and an residual error term, which are affected by a function Im nu (zeta(i) ). In the region xi > 6, phase function theta(z) has four stationary phase points on iR , the corresponding asymptotic approximations can be characterized with an N(lambda)-soliton with diverse residual error order O(t(-1)).
引用
收藏
页数:53
相关论文
共 50 条
  • [21] On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions
    Li, Zhi-Qiang
    Tian, Shou-Fu
    Yang, Jin-Jie
    ADVANCES IN MATHEMATICS, 2022, 409
  • [22] Loop dynamics of shifted space-time nonlocal short pulse equation
    Sarfraz, H.
    Saleem, U.
    Hanif, Y.
    PHYSICS LETTERS A, 2024, 523
  • [23] Exact solutions of space-time fractional KdV-MKdV equation and Konopelchenko-Dubrovsky equation
    Tang, Bo
    Tao, Jiajia
    Chen, Shijun
    Qu, Junfeng
    Wang, Qian
    Ding, Ling
    OPEN PHYSICS, 2020, 18 (01): : 871 - 880
  • [24] ASYMPTOTIC BEHAVIOR OF CURVATURE TENSOR ON AN ASYMPTOTICALLY FLAT SPACE-TIME
    LEHMAN, E
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1968, 9 (03): : 213 - &
  • [25] LONG-TIME ASYMPTOTIC BEHAVIOR OF FISHER-KPP EQUATION FOR NONLOCAL DISPERSAL IN ASYMMETRIC KERNEL
    Kong, De -Yu
    Han, Bang-Sheng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2659 - 2669
  • [26] Long-time Asymptotics for the Reverse Space-time Nonlocal Hirota Equation with Decaying Initial Value Problem: without Solitons
    Wei-qi PENG
    Yong CHEN
    Acta Mathematicae Applicatae Sinica, 2024, 40 (03) : 708 - 727
  • [27] Long-time Asymptotics for the Reverse Space-time Nonlocal Hirota Equation with Decaying Initial Value Problem: without Solitons
    Peng, Wei-qi
    Chen, Yong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (03): : 708 - 727
  • [28] On Behavior Analysis of Solutions for the Modified Complex Short Pulse Equation in the Space-Time Soliton Regions
    Wang, Jia
    Geng, Xianguo
    Wang, Kedong
    Li, Ruomeng
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (03)
  • [29] Long-time behavior for a nonlocal convection diffusion equation
    Ignat, Liviu I.
    Ignat, Tatiana I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 816 - 831
  • [30] ASYMPTOTIC BEHAVIOR OF NONLOCAL PARTIAL DIFFERENTIAL EQUATIONS WITH LONG TIME MEMORY
    Xu, Jiaohui
    Caraballo, Tomas
    Valero, Jose
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (10): : 3059 - 3078