Automatic Selection of Compiler Optimizations by Machine Learning

被引:0
|
作者
Peker, Melih [1 ]
Ozturk, Ozcan [1 ]
Yildirim, Suleyman [2 ]
Ozturk, Mahiye Uluyagmur [2 ]
机构
[1] Bilkent Univ, Bilgisayar Muhendisligi Bolumu, Bilkent, Turkiye
[2] Huawei Turkiye Ar Ge Merkezi, Istanbul, Turkiye
关键词
GCC; Compilers; Machine Learning; Optimization;
D O I
10.1109/SIU59756.2023.10223902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many widely used telecommunications applications have extremely long run times. Therefore, faster and more efficient execution of these codes on the same hardware is important in critical telecommunication applications such as base stations. Compilers greatly affect the properties of the executable program to be created. It is possible to change properties such as compilation speed, execution time, power consumption and code size using compiler flags. This study aims to find the set of flags that will provide the shortest run time among hundreds of compiler flag combinations in GCC using code flow analysis, loop analysis and machine learning methods without running the program.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Automatic granularity selection and OpenMP directive generation via Extended Machine Descriptors in the PROMIS parallelizing compiler
    Ko, Walden
    Polychronopoulos, Constantine D.
    OPENMP SHARED MEMORY PARALLEL PROGRAMMING, PROCEEDINGS, 2008, 4315 : 207 - +
  • [32] Energy Consumption Reduction by Automatic Selection of Compiler Options
    Patyk, Tomasz
    Hannula, Harri
    Kellomaki, Pertti
    Takala, Jarmo
    ISSCS 2009: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS,, 2009, : 317 - 320
  • [33] Automatic Algorithm Selection in Computational Software Using Machine Learning
    Simpson, Matthew C.
    Yi, Qing
    Kalita, Jugal
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 355 - 360
  • [34] Automatic Load Model Selection Based on Machine Learning Algorithms
    Hernandez-Pena, S.
    Perez-Londono, S.
    Mora-Florez, J.
    IEEE ACCESS, 2022, 10 : 89308 - 89319
  • [35] Automatic Selection of Tuning Plugins in PTF Using Machine Learning
    Mijakovic, Robert
    Gerndt, Michael
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2020), 2020, : 349 - 358
  • [36] Automatic Selection of Machine Learning Models for Armed People Identification
    Javier Amado-Garfias, Alonso
    Conant-Pablos, Santiago Enrique
    Ortiz-Bayliss, Jose Carlos
    Terashima-Marin, Hugo
    IEEE ACCESS, 2024, 12 : 175952 - 175968
  • [37] Automatic Thumbnail Selection for Soccer Videos using Machine Learning
    Husa, Andreas
    Midoglu, Cise
    Hammou, Malek
    Hicks, Steven A.
    Johansen, Dag
    Kupka, Tomas
    Riegler, Michael A.
    Halvorsen, Pal
    PROCEEDINGS OF THE 13TH ACM MULTIMEDIA SYSTEMS CONFERENCE, MMSYS 2022, 2022, : 73 - 85
  • [38] Compiler optimizations to reduce security overhead
    Zhang, Tao
    Zhuang, Xiaotong
    Pande, Santosh
    CGO 2006: 4TH INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION, 2006, : 346 - +
  • [39] Automatically proving the correctness of compiler optimizations
    Lerner, S
    Millstein, T
    Chambers, C
    ACM SIGPLAN NOTICES, 2003, 38 (05) : 220 - 231
  • [40] Weakest Precondition Synthesis for Compiler Optimizations
    Lopes, Nuno P.
    Monteiro, Jose
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION: (VMCAI 2014), 2014, 8318 : 203 - 221