Comprehensive machine learning-based preoperative blood features predict the prognosis for ovarian cancer

被引:1
|
作者
Wu, Meixuan [1 ]
Gu, Sijia [1 ]
Yang, Jiani [2 ,3 ]
Zhao, Yaqian [2 ,3 ]
Sheng, Jindan [2 ,3 ]
Cheng, Shanshan [1 ,2 ,3 ]
Xu, Shilin [1 ]
Wu, Yongsong [1 ]
Ma, Mingjun [2 ,3 ]
Luo, Xiaomei [2 ,3 ]
Zhang, Hao [2 ,3 ]
Wang, Yu [1 ,2 ,3 ]
Zhao, Aimin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Dept Obstet & Gynecol, Shanghai, Peoples R China
[2] Tongji Univ, Shanghai Matern & Infant Hosp 1, Sch Med, Dept Obstet & Gynecol, Shanghai, Peoples R China
[3] Tongji Univ, Shanghai Matern & Infant Hosp 1, Sch Med, Shanghai Key Lab Maternal Fetal Med, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Ovarian cancer; Machine learning; Blood features; Prognosis; LYMPHOCYTE RATIO; PLATELET; NEUTROPHIL; CARCINOMA; SURVIVAL; IMPACT; STAGE;
D O I
10.1186/s12885-024-11989-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PurposeSignificant advancements in improving ovarian cancer (OC) outcomes have been limited over the past decade. To predict prognosis and improve outcomes of OC, we plan to develop and validate a robust prognosis signature based on blood features.MethodsWe screened age and 33 blood features from 331 OC patients. Using ten machine learning algorithms, 88 combinations were generated, from which one was selected to construct a blood risk score (BRS) according to the highest C-index in the test dataset.ResultsStepcox (both) and Enet (alpha = 0.7) performed the best in the test dataset with a C-index of 0.711. Meanwhile, the low RBS group possessed observably prolonged survival in this model. Compared to traditional prognostic-related features such as age, stage, grade, and CA125, our combined model had the highest AUC values at 3, 5, and 7 years. According to the results of the model, BRS can provide accurate predictions of OC prognosis. BRS was also capable of identifying various prognostic stratifications in different stages and grades. Importantly, developing the nomogram may improve performance by combining BRS and stage.ConclusionThis study provides a valuable combined machine-learning model that can be used for predicting the individualized prognosis of OC patients.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Development of Nomogram Models Based on Peripheral Blood Score and Clinicopathological Parameters to Predict Preoperative Advanced Stage and Prognosis for Epithelial Ovarian Cancer Patients
    Bai, Gaigai
    Zhou, Yue
    Rong, Qing
    Qiao, Sijing
    Mao, Hongluan
    Liu, Peishu
    JOURNAL OF INFLAMMATION RESEARCH, 2023, 16 : 1227 - 1241
  • [22] Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics
    Bing Mao
    Jingdong Ma
    Shaobo Duan
    Yuwei Xia
    Yaru Tao
    Lianzhong Zhang
    European Radiology, 2021, 31 : 4576 - 4586
  • [23] Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics
    Mao, Bing
    Ma, Jingdong
    Duan, Shaobo
    Xia, Yuwei
    Tao, Yaru
    Zhang, Lianzhong
    EUROPEAN RADIOLOGY, 2021, 31 (07) : 4576 - 4586
  • [24] Using an optimal set of features with a machine learning-based approach to predict effector proteins for Legionella pneumophila
    Ashari, Zhila Esna
    Brayton, Kelly A.
    Broschat, Shira L.
    PLOS ONE, 2019, 14 (01):
  • [25] Machine Learning-Based Perihematomal Tissue Features to Predict Clinical Outcome after Spontaneous Intracerebral Hemorrhage
    Qi, Xin
    Hu, Guorui
    Sun, Haiyan
    Chen, Zhigeng
    Yang, Chao
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2022, 31 (06):
  • [26] Machine Learning-Based Model Can Predict Stroke Outcome
    Heo, JoonNyung
    Yoon, Jihoon
    Park, Hyung Jong
    Kim, Young Dae
    Nam, Hyo Suk
    Heo, Ji Hoe
    STROKE, 2018, 49
  • [27] Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
    Taeidi, Elham
    Ranjbar, Amene
    Montazeri, Farideh
    Mehrnoush, Vahid
    Darsareh, Fatemeh
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
  • [28] Machine Learning-Based Colorectal Cancer Detection
    Blanes-Vidal, Victoria
    Baatrup, Gunnar
    Nadimi, Esmaeil S.
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 43 - 46
  • [29] Machine Learning-Based Anomaly Detection in NFV: A Comprehensive Survey
    Zehra, Sehar
    Faseeha, Ummay
    Syed, Hassan Jamil
    Samad, Fahad
    Ibrahim, Ashraf Osman
    Abulfaraj, Anas W.
    Nagmeldin, Wamda
    SENSORS, 2023, 23 (11)
  • [30] Machine Learning-Based Analysis of Program Binaries: A Comprehensive Study
    Xue, Hongfa
    Sun, Shaowen
    Venkataramani, Guru
    Lan, Tian
    IEEE ACCESS, 2019, 7 : 65889 - 65912